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Scalar potentials for light in a cavity
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The nonequilibrium dynamics of light in a coherently driven nonlinear cavity resembles the equilibrium
dynamics of a Brownian particle in a scalar potential. This resemblance has been known for decades, but the
correspondence between the two systems has never been properly assessed. Here we demonstrate that this
correspondence can be exact, be approximate, or break down, depending on the driving conditions. For vanishing
nonlinearity and on-resonance driving, the correspondence is exact: The cavity dissipation and driving amplitude
define a scalar potential, and light follows the equilibrium Boltzmann distribution with an effective temperature
defined by the noise variance and cavity dissipation. The scalar potential pertaining to linear on-resonance
dynamics fails dramatically in nonlinear and/or off-resonance regimes. However, we introduce a distinct scalar
potential enabling an effective equilibrium description of light. Our potential gives a reasonably accurate
description in limited nonlinear regimes of bistability, but fails deep in the bistability where nonconservative
forces dominate the dynamics. Consequently, the correspondence to Brownian motion in a scalar potential
breaks down. This breakdown is accompanied by a qualitative change in the spectrum of small intracavity field
fluctuations, reminiscent of an exceptional point of a non-Hermitian Hamiltonian. Our results lay the foundations
for an effective thermodynamic description of coherently driven cavities, and suggest that fundamental results
for overdamped Langevin dynamics can help to assess the energetics and information processing of resonant
optical technologies.

DOI: 10.1103/PhysRevResearch.5.013154

I. INTRODUCTION

Many advances in physics have resulted from identify-
ing a correspondence between nonequilibrium behavior of
light and equilibrium behavior of matter. For example, Haken
realized that lasing corresponds to a second-order phase tran-
sition in equilibrium [1]. He furthermore connected optics
to Ginzburg-Landau theory [1,2], and thereby pioneered re-
search on phase transitions of photons. This research has
flourished recently, resulting, for example, in the discov-
ery of dissipative phase transitions [3–9] and applications
to quantum technologies [10–13]. A more recent example is
due to Foss-Feig and co-workers, who described a bistable
cavity array as a classical Ising model in equilibrium [14].
This correspondence is promising for solving nondeterminis-
tic polynomial time (NP)-hard problems [15,16], for which
no efficient algorithm exists [17].

In the 1980s, Risken and co-workers made an interest-
ing analogy between light in a bistable cavity and Brownian
motion in a double-well potential [18–20]. They associated
optical states with potential minima, and light fluctuations
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with thermal motion. Despite the long history of this analogy,
its exact or approximate validity has never been properly
assessed. Recently, Andersen and co-workers defined a scalar
potential for a bistable resonator [21]. Using their scalar
potential and the equilibrium theory of Kramers [22], they
approximately reproduced the system’s dynamics in certain
parameter regimes. In other regimes, inconsistencies with
quantum theory were attributed to quantum effects rather than
to the questionable validity of their scalar potential. This
prompts the questions: Can a scalar potential capture optical
dynamics in a cavity? And how far does the correspondence
to equilibrium physics go? Figure 1 illustrates the essence of
these questions, which motivate this work.

Here we demonstrate that the correspondence between
stochastic light in a coherently driven single-mode cavity
and equilibrium Brownian dynamics in a one-dimensional
(1D) scalar potential can be exact, be approximate, or break
down, depending on the optical system’s parameters. The
exact, approximate, and breakdown regimes are not trivial
extensions of each other. Actually, the intermediate regime
admitting an approximate equilibrium description is based on
a scalar potential we introduce, and which is very different
from the potential in the exact correspondence regime. This
paper is organized as follows. In Sec. II we introduce the
model for a single-mode nonlinear cavity. We then show that
a single electromagnetic mode is mathematically equivalent
to two-dimensional overdamped Langevin dynamics under a
nonconservative force which cannot be derived from a scalar
potential. It turns out that this nonconservative force can
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FIG. 1. Left: The transmission of a coherently driven nonlinear
optical cavity switches between two states due to the influence of
noise. Right: A Brownian particle in a scalar double-well potential.
The figure, overall, illustrates the main question motivating this
paper: Is stochastic light in a coherently driven cavity a Brownian
particle in a scalar potential?

vanish in two ways, one discussed in Sec, III and another dis-
cussed in Sec. IV. However, only the way discussed in Sec. III
allows an exact effective equilibrium description in terms of
a scalar potential. In an attempt to approximately describe
nonlinear optical dynamics in terms of a scalar potential, in
Sec. V we identify a path in the two-dimensional (2D) phase
space along which we define a 1D scalar potential. In Sec. VI
we assess the accuracy of this 1D potential by comparing its
corresponding equilibrium distribution with the distribution
of the 2D system along the same path. We make this com-
parison across the monostable-to-bistable transition, and find
nonmonotonic deviations from effective equilibrium behavior
across the transition. We also show that the strength of the
noise has a nontrivial effect on these deviations. In Sec. VII
we explain the validity range of our approximate 1D potential
by analyzing the spectrum of small fluctuations on top of the
steady-state cavity field. We find a qualitative change in the
fluctuation spectrum at the boundary of the validity range of
our potential. This change occurs at a point reminiscent of
the exceptional point of a non-Hermitian Hamiltonian. The
models we relate—the overdamped Langevin equation and
a single-mode coherently driven cavity—are cornerstones of
stochastic thermodynamics on one hand and resonant optics
on the other hand. While connections between classical (de-
terministic) thermodynamics and optics have been known for
decades [23], our results point to a frontier at the intersection
of stochastic thermodynamics [24–27] and resonant optics.
Section VIII presents our perspective towards that frontier and
a summary of our results.

II. THE MODEL

We consider a coherently driven single-mode cavity with
cubic nonlinearity. This paradigmatic system is at the heart of
recent studies of dissipative phase transitions [4–6,8,28–31],
polariton blockade [32,33], and stochastic resonance [34,35].
Single-mode cavities are also intensely investigated for ap-
plications to sensing [36–40], nanoparticle trapping [41],
nonreciprocity [42–48], and quantum technologies [49–51].

The state of the cavity can be described exactly based on
a master equation or the corresponding Fokker-Planck equa-
tion, as shown by Drummond and Walls [52]. Here we make
an equivalent (under the assumptions given in Appendix A)

description based on a stochastic differential equation in the
spirit of Langevin’s celebrated equation [53]. Such a descrip-
tion is well suited for elucidating Brownian motion [54], and
for exploring the properties of stochastic trajectories which
are solutions to the Langevin equation for a particular noise
realization [55,56].

In a frame rotating at the frequency ω of the driving laser,
the intracavity light field α satisfies

iα̇ =
(

−� − i
�

2
+ U |α|2

)
α + i

√
κLA + Dζ (t ). (1)

� = ω − ω0 is the laser’s detuning from the resonance fre-
quency ω0. � = γa + κL + κR is the total loss rate, with
γa the absorption rate and κL,R a “left” or “right” input-
output rate. U is the Kerr nonlinearity strength. A is the
laser amplitude, assumed to be real. ζ (t ) = ζR(t ) + iζI (t ) is a
complex-valued stochastic term accounting for white noise in
the laser amplitude and phase. ζR,I are each a Gaussian process
with mean 〈ζR(t )〉 = 〈ζI (t )〉 = 0 and correlation 〈ζ j (t )ζk (t +
t ′)〉 = δ j,kδ(t ′). Since each Gaussian process ζR,I has stan-
dard deviation equal to one, D is the standard deviation of
each stochastic force DζR,I . In Appendix A we discuss the
assumptions and approximations underlying Eq. (1). Therein,
we also refer to several experiments which are extremely well
described by Eq. (1), with the noise properties we assume
[5,34,35,57,58].

Let us decompose Eq. (1) into real and imaginary parts.
Defining α = αR + iαI and 
 = UN − � with N = |α|2 the
number of intracavity photons, we get(

α̇R

α̇I

)
=

(−�
2 


−
 −�
2

)(
αR

αI

)
+

(√
κLA
0

)
+ D

(
ζR(t )
ζI (t )

)
. (2)

Equation (2) resembles a two-dimensional overdamped
Langevin equation (OLE). In more than one dimension, the
OLE has the form

γ
d

dt
�x = �F + D�ξ (t ), (3)

with �F a deterministic force matrix, �ξ (t ) a stochastic force
vector, and γ the damping which we assume to be equal for
all degrees of freedom. Let us multiply Eq. (2) by � to make
its left-hand side identical to that of Eq. (3). Then, we can
identify the components of �F in our cavity:

FR = −�2αR

2
+ �
αI + �

√
κA, (4a)

FI = −�2αI

2
− �
αR. (4b)

For a scalar potential V = − ∫ �Fd �α to exist, �F must be con-
servative and irrotational. Its curl should vanish. Using the
above expressions for FR and FI , we can calculate the mag-
nitude of the curl of �F as follows:

| �∇ × �F | =
∣∣∣∣
(

∂FI

∂αR
− ∂FR

∂αI

)∣∣∣∣ = �|2� − 4UN |. (5)

Hence, V can only exist if 2� = 4UN such that �F is irrota-
tional. This condition can be satisfied in two ways. The first
way, considered in Sec. III, is by driving a linear cavity on
resonance such that � = U = 0. The second way, considered

013154-2



SCALAR POTENTIALS FOR LIGHT IN A CAVITY PHYSICAL REVIEW RESEARCH 5, 013154 (2023)

F /

FIG. 2. (a) Phase portrait of a linear cavity driven on resonance.
αR and αI are the real and imaginary parts of the intracavity field
α, respectively. Color and arrows represent force magnitude and
direction, respectively. The white dot is the sole stable fixed point.
(b) Probability density function of αR for three values of the standard
deviation of the noise D relative to the dissipation �. Solid curves are
numerical results using Eq. (1). Dashed white curves are Boltzmann
distributions. The potential VR for the Boltzmann distributions is
defined along the green line in (a), where α̇I = 0. The effective tem-
perature is given by T = �D2/2kB, with kB the Boltzmann constant.

in Sec. IV, is by driving a nonlinear cavity off resonance with
a laser amplitude giving N = �/2U .

III. EXACT POTENTIAL FOR A LINEAR CAVITY
DRIVEN ON RESONANCE

Consider a linear cavity driven on resonance, where 
 = 0
and αR decouples from αI . Figure 2(a) shows the phase por-
trait of this system. The magnitude and direction of �F are
encoded in color and arrows, respectively. All force vectors
are perpendicular to the contours of constant force magnitude
and directed to the fixed point. This behavior is known as
gradient flow. It arises when the system’s dynamics are fully
prescribed by a conservative force which is the negative gra-
dient of a scalar potential.

Let us now integrate the forces in Eq. (4) (with 
 = 0) to
obtain the corresponding scalar potentials:

VR = �2

4
α2

R − �
√

κLAαR, (6a)

VI = �2

4
α2

I . (6b)

The potentials are harmonic, as expected for a linear cavity.
The only difference between VR and VI is that the minimum of
VR is displaced from zero by the laser amplitude entering the
cavity.

We can now describe the optical dynamics in terms of two
decoupled OLEs involving scalar potentials:

α̇R,I = − 1

�

∂VR,I

∂αR,I
+ DζR,I (t ). (7)

Next we demonstrate that a resonantly driven linear cav-
ity admits an effective equilibrium description. The effective
temperature T is related to the noise variance D2 via the
fluctuation-dissipation relation �D2 = 2kBT , with kB the
Boltzmann constant.

We numerically solved Eq. (1) with noise using the
xSPDE MATLAB toolbox [59]. Based on the resultant

stochastic trajectories αR(t ), we calculated probability den-
sity functions (PDFs) for αR, namely, P(αR). Figure 2(b)
shows results for three different values of D/

√
� as curves

of different color. All PDFs have negligible statistical error
because they are based on trajectories lasting �t = 106, and
�−1 is the relaxation time to a steady state. Figure 2(b) also
shows, as white dashed curves, the corresponding equilibrium
Boltzmann distributions

P(αR) = N e−VR/kBT , (8)

with N a normalization constant. These are first-principles
calculations and not fits to the numerical data. We inserted
the potential VR from Eq. (6a) into Eq. (8) to calculate P(αR),
and used �D2 = 2kBT to determine the temperature T . VI can
be neglected because αI is decoupled from αR, and the driving
field acts on αR only. While not shown here, we confirmed the
accuracy of the fluctuation-dissipation relation by calculating
P(αR) for different values of � and verifying its agreement
with the Boltzmann distribution.

The preceding analysis demonstrates that a resonantly
driven linear optical cavity is mathematically equivalent to
thermodynamic systems described by OLEs. This equivalence
establishes a connection between photonics and stochastic
thermodynamics, where studies of OLEs have elucidated fun-
damental limits to the energetics and information processing
capabilities of small material systems. Thus, many of those
results can also serve to assess the energetic and information
processing performance of noisy optical systems.

The effective temperature of the intracavity field is not
constrained by the temperature of the medium in the cavity. In
fact, even in an empty cavity, the effective temperature can be
increased by imprinting white noise on the driving laser using
modulators [34,35]; the case of colored noise is beyond the
scope of this paper. The effective temperature, associated with
optical noise, is also different from the temperature reached
by electromagnetic radiation when it equilibrates through in-
teractions with matter [23]. We propose that the effective
temperature of stochastic light can be understood from the
perspective of the kinetic theory of gases. From that perspec-
tive, the temperature of an ideal gas is related to the average
kinetic energy of the particles. A higher temperature increases
the probability of finding a particle away from its equilibrium
position at zero temperature. Noise in the laser amplitude and
phase does the same to the intracavity light field: It increases
the probability of finding field amplitudes and phases away
from the equilibrium value at zero noise.

In the remainder of this paper we focus on understanding
whether and how a nonlinear cavity driven off resonance ad-
mits an effective equilibrium description in terms of a scalar
potential. The case of a linear cavity driven off resonance is
discussed in Appendix B.

IV. APPROXIMATE GRADIENT FLOW FOR A
JUDICIOUSLY DRIVEN NONLINEAR CAVITY

Next we investigate the second way in which �∇ × �F = 0
and gradient flow behavior can be expected. To this end, we
calculated �∇ × �F using the steady-state solutions to Eq. (1)
obtained by setting α̇ = 0. For this and all nonlinear cal-
culations in this paper, we assume a weak single-photon
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|F|/ |F|/
2

FIG. 3. (a) Curl of the deterministic force F versus the laser-cavity detuning � and driving amplitude A, all referenced to the dissipation
rate �. The black dot is where the steady-state solutions bifurcate, leading to bistability in the dark gray region. The black dashed curve
indicates the path where | �∇ × �F | = 0. The light-colored region around the black dashed curve is where | �∇ × �F |/�2 < 0.2, i.e., only a small
nonconservative force is present. (b) Phase portrait for �/� = 0.5 and A/

√
� = 3.952. The driving parameters (�/�, A/

√
�), indicated by

the star in (a), are such that the steady-state intensity fulfills the zero-curl condition N = �/2U . The black curve with white arrows follows
the evolution of the intracavity field [obtained by solving Eq. (1)] when initialized at αR(0) = αI (0) = 7.9. (c) Zoom into the white square in
(b). The white dot in (b) and (c) is the fixed point.

nonlinearity U/� = 0.01. This value is typical of state-of-
the-art single-mode semiconductor cavities [60]. The exact
value of U/� is not important. Nonlinearities emerge even for
arbitrarily small U/�, provided that A is sufficiently large to
make UN � �. However, U � � is required to justify our
description neglecting quantum effects. As shown by Vogel
and Risken, only for U � � the state of the intracavity field
is characterized by a positive Wigner function which can be
interpreted as a classical probability distribution [19].

Figure 3(a) shows | �∇ × �F |/�2 in color as a function of
�/� and A/

√
�. Starting from weak on-resonance driving

(A/
√

� → 0, �/� = 0), Fig. 3(a) shows that increasing either
A/

√
� or �/� alone makes the curl of �F grow in magni-

tude. The resultant rotational force is illustrated in Fig. 10
of Appendix B for the particular case of U = 0 and � 
= 0.
If α is perturbed or initialized away from the fixed point, the
rotational force makes α descend to the fixed point along a
spiral. This contrasts with the gradient descent observed in
the previous section.

Interestingly, Fig. 3(a) shows that �∇ × �F = 0 for certain
off-resonance nonlinear conditions. In particular, there exists
a path in parameter space (�/� and A/

√
�) along which the

cavity can be driven from the vacuum state into the bistable
regime while maintaining �∇ × �F = 0 continuously; this path
is shown as a dashed black curve in Fig. 3(a). In the con-
clusions we explain the relevance of this path to the solution
of optimization problems using nonlinear optical cavities as
proposed in Ref. [16].

Figure 3(b) shows the phase portrait of the system for
�/� = 0.5 and A/

√
� = 3.952 [at the star in Fig. 3(a)],

where �∇ × �F = 0. The force field deviates from gradient flow.
To emphasize this, in Fig. 3(b) we plot as a black curve
with white arrows the evolution of the deterministic system
initialized far from the fixed point. This curve was obtained
by numerically solving Eq. (1) with D = 0 and initial condi-
tions αR(0) = αI (0) = 7.9. Far from the fixed point, the force
vectors are neither perpendicular to the contours of constant

force magnitude nor are they pointing to the fixed point. How-
ever, this situation changes as the system approaches the fixed
point. To show this effect more clearly, in Fig. 3(c) we present
a zoomed-in view of Fig. 3(b). This view shows approximate
gradient flow near the fixed point: The field descends to the
fixed point along curves that are approximately perpendicular
to the contours of constant force magnitude.

We can reconcile the results in Figs. 3(b) and 3(c) with
those in Fig. 3(a) by recalling that �∇ × �F was evaluated using
the steady-state solutions to Eq. (1), i.e., at the fixed points.
Thus, the path in Fig. 3(a) where �∇ × �F = 0 pertains only to
the fixed points. Deviations from the fixed point change the
intracavity intensity N , in turn modifying �∇ × �F according to
Eq. (5). Such deviations are inevitable in the presence of noise.
Consequently, an effective equilibrium description of light in
a nonlinear cavity seems questionable even if the force (at the
fixed point) is purely conservative.

V. APPROXIMATE POTENTIAL FOR
A NONLINEAR CAVITY

The previous section showed lack of gradient flow when
the field in a nonlinear cavity driven off resonance is dis-
placed from the fixed point. That result seems to preclude an
effective equilibrium description in terms of a scalar poten-
tial. Nonetheless, we show next that an approximate effective
equilibrium description in terms of a 1D scalar potential is still
possible. However, the relevant potential is neither VR nor VI .

Let us first compare the cavity spectral response in the
linear and nonlinear regimes, neglecting noise (D = 0). The
linear regime is accessed via weak driving. This results in
an approximately Lorentzian resonance line shape, as the red
curve in Fig. 4(a) shows. The nonlinear regime is accessed via
strong driving. Since U > 0, the resonance line shape bends
to the right and a region of bistability emerges. This is shown
in Fig. 4(a), with green and gray curves representing stable
and unstable states.
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FIG. 4. (a) Number of photons, N , versus �/� for two different
driving amplitudes A. A/

√
� = 1.4 for the red curve, where all states

are stable. A/
√

� = 9.71 for the green and gray curves, which cor-
respond to stable and unstable states, respectively. The dashed line
indicates the detuning considered in (d). (b) Number of stable steady
states versus driving parameters in a Kerr-nonlinear cavity. White
and gray areas correspond to one and two stable states, respectively.
Entering the bistability along the dashed line corresponds to a su-
percritical pitchfork bifurcation. The inset zooms into the vicinity
of the bifurcation, and indicates the driving conditions considered
in Fig. 5. The green and red ticks on the vertical axis indicate the
two driving amplitudes considered in (a). [(c), (d)] The PDF for the
intracavity field obtained by numerically solving Eq. (1). The driving
conditions are (c) A/

√
� = 1.4 and �/� = 0, (d) A/

√
� = 9.71 and

�/� = 1.5. Green curves are the path  where α̇I = 0 and the po-
tential Vapp is defined. The dashed circle in (c) indicates the location
of the PDF as predicted by Eqs. (6) and (8), in disagreement with
numerical results.

Figure 4(b) shows regions where the cavity supports one
and two stable steady states as white and gray areas, respec-
tively. Figures 4(c) and 4(d) show PDFs for α at two distinct
driving conditions. These PDFs were calculated based on
stochastic trajectories of α(t ). We calculated eight trajectories
with different noise realizations ζ (t ), all with a large dura-
tion �t = 106 and D = 2

√
�/2. With this amount of data,

statistical errors in the calculated PDFs are negligible and
undetectable in any of our plots. Figure 4(c) was obtained
for A/

√
� = 1.4 [corresponding to the red curve in Fig. 4(a)]

and �/� = 0. The slightly larger uncertainty of the state
along αR than along αI is a mild squeezing effect due to the
nonlinearity. Figure 4(d) shows the PDF for A/

√
� = 9.71

and �/� = 1.5, which probes states at the intersections of the
green curves and the dashed line in Fig. 4(a). The observed
bimodal distribution indicates bistability.

In general, the dynamics of the 2D field α cannot be
fully described in terms of a 1D scalar potential. However,
we hypothesize that, for 
 � �, the dynamics of the un-
driven degree of freedom αI can be disregarded. In that case,
an approximate 1D potential Vapp may capture the essential
dynamics of the full 2D system. To test this idea, we plot
the values of (αR, αI ) for which α̇I = 0 as green curves
in Figs. 4(c) and 4(d). This one-dimensional path  physi-
cally corresponds to an electromagnetic field quadrature being
static. This behavior can be measured using standard balanced
homodyne detection methods [61]. Notice how the path 

passes through the main features of the PDF even in the
nonlinear regime of bistability. Remarkably,  closely follows
the most probable path between the two attractors in Fig. 4(d).
Based on this observation, we propose defining Vapp along
. We stress that Vapp is an entirely different potential from
VR and VI , which are not centered along the path  and fail
dramatically even in the monostable regime. For reference, the
white dashed circle in Fig. 4(c) indicates the expected location
of the peak in the PDF if one were to naively apply Eqs. (6)
and (8) in this case.

Along the path , the time evolution of αR acts as a local
force approximately capturing the full system’s dynamics:

Fapp = �α̇R

∣∣∣∣
α̇I =0

= �
√

κLA − �2

2αR

(
α2

R + α2
I

)
. (9)

The approximate potential Vapp is obtained by integrating Fapp

along :

Vapp(αR, αI ) = −
∫

Fappd. (10)

We now want to relate positions along the path  to light
intensities N . To this end, we recall that the distance of
any point in the (αR, αI ) plane from the origin is

√
N =√

(α2
R + α2

I ). Using this relation, in Fig. 5 we plot Vapp(
√

N ) as
red curves for different driving conditions. Figures 5(a)–5(c)
are evaluated along the dashed line in Fig. 4(b), crossing
the point {�c, Ac} = {�√

3/2, �3/23−3/4/
√

κLU } where the
steady-state intensity bifurcates [14]; note that the dashed line
in Fig. 4(b) is not the same as the dashed curve in Fig. 3(a).
The observed transformation of Vapp from single well to dou-
ble well in Figs. 5(a)–5(c) corresponds to a system undergoing
a supercritical pitchfork bifurcation. To demonstrate how Vapp

captures the distribution of the full system, the shaded areas
in Fig. 5 show PDFs obtained from stochastic simulations of
Eq. (1). Notice the good agreement between the peaks in the
PDF and the dips in Vapp for the various driving conditions.

Figures 5(d)–5(f) show that Vapp approximately captures
the distribution of light in the cavity also when �/� is
varied while A/

√
� is constant. In particular, we plot Vapp

at the driving conditions indicated by the orange dots in
Fig. 4(b). Figures 5(d)–5(f) show how Vapp tilts right to left as
�/� increases. Correspondingly, the numerically calculated
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FIG. 5. Red curves are the approximate potential Vapp. Shaded ar-
eas are PDFs for the field amplitude

√
N . [(a)–(c)] Driving conditions

are along the dashed line in Fig. 4(b). The PDF and Vapp are reshaped
as A/

√
� and �/� increase and the system undergoes a supercritical

pitchfork bifurcation. [(d)–(f)] Driving conditions are indicated by
the orange dots in Fig. 4(b). The PDF and Vapp tilt due to a change
in �/�.

PDFs for the full system [Eq. (1)] show the same behavior.
The success of Vapp is remarkable considering that it is a
1D scalar potential used to describe a 2D nonconservative
system. Moreover, this effective 1D equilibrium description
works reasonably well even in the highly nonlinear regime
of bistability where UN ∼ �. A more quantitative analysis is
presented in the next section.

VI. DEVIATIONS FROM BOLTZMANN STATISTICS

In this section we assess the accuracy of Vapp by com-
paring probability distributions of field amplitudes P(

√
N )

calculated in two different ways. First we calculate P(
√

N ) for
the full system along the path . We call those distributions
Pfull (

√
N ). We obtained Pfull (

√
N ) by numerically solving

Eq. (1) with U/� = 0.01 and D = √
�/2/2. We evolved the

system for a time �t = 105 and ran simulations for 120 dif-
ferent noise realizations. The resultant Pfull (

√
N ) are shown

in Fig. 6 as areas of different color for six different driving
conditions (A/

√
�,�/�). All driving conditions lie along the

dashed line in the figure inset, which is the same dashed line
shown in Fig. 4(b). Here, again, we verified that statistical
errors in all PDFs are much smaller than the thickness of
the plotted curves. Next we calculate equilibrium Boltzmann

0 2 4 6 8 10 12

(∆/Γ, A/ Γ)(0.1, 1.95)

(0.4, 3.62)

(0.7, 5.28)

(0.86, 6.17)

(1.1, 7.50)

(0.95, 6.67)

1.50
0

10

Δ/Γ

A
/
Γ

FIG. 6. PDF of the field amplitude
√

N for six values of the
driving amplitude A/

√
� and the detuning �/�, referenced to the

dissipation �. D = √
�/2/2 in all calculations. Colored areas are

obtained by solving Eq. (1). Black curves are Boltzmann distribu-
tions for the potential Vapp. Inset: Number of stable steady states
versus driving parameters in a Kerr-nonlinear cavity, with colored
dots indicating the values of A/

√
� and �/� considered in the main

panel.

distributions by inserting Vapp and the effective temperature
T = �D2/2kB in Eq. (8). The Boltzmann distributions, which
we call PBol(

√
N ), are the black curves over Pfull (

√
N ) in

Fig. 6.
For small A/

√
� and �/�, Pfull (

√
N ) and PBol(

√
N ) are

in very good agreement. This is expected based on the
results in Fig. 2(b). Then, as A/

√
� and �/� increase,

Pfull (
√

N ) increasingly deviates from PBol(
√

N ). We quantify
the difference between the two distributions via the overlap
integral

ε = 1

2

∫
|Pfull − PBol|d

√
N . (11)

ε = 0 when Pfull (
√

N ) = PBol(
√

N ), and ε = 1 when the two
distributions have zero overlap.

Figure 7(a) shows that ε is a nonmonotonic function of the
distance to the bifurcation, controlled via A/

√
� and �/�. A

large ε is presumably the result of a nonconservative force,
which is absent in the Boltzmann distribution taking into
account Vapp only. We tested this hypothesis by calculating two
quantities which are related but not exactly the same. First we
calculated the ratio 4|
|2/�2, which is the coupling strength
between αR and αI relative to the dissipation. Since αR and
αI each experience a purely conservative force proportional to
�2/2 for 
 = 0, the quantity 4|
|2/�2 is related to the ratio of

013154-6



SCALAR POTENTIALS FOR LIGHT IN A CAVITY PHYSICAL REVIEW RESEARCH 5, 013154 (2023)

∆/Γ

0

0.1

0.2

0.3
/ Γ/2 = 1/4

/ Γ/2 = 1/2

/ Γ/2 = 3/4

/ Γ/2 = 1

(a)

(b)

×
⃑
/Γ

4
Ω
/Γ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIG. 7. (a) Deviation ε from the Boltzmann distribution, as de-
fined by Eq. (11), for the same values of A/

√
� and �/� considered

in Fig. 6, and for various D. (b) Black curves correspond to the ratio
of off-diagonal to diagonal parts of the first matrix in the right-hand
side of Eq. (2). This ratio quantifies the mutual coupling between the
field components αR and αI . In the regime of bistability, each dashed
black curve corresponds to one of the two stable states, and the solid
black curve is their mean. The orange cross marks the boundary
between weak and strong coupling between αR and αI . The red curve
corresponds to the magnitude of the curl of the force (referenced to
�) as indicated on the right axis.

nonconservative to conservative forces in the 2D system. The
second quantity we calculated is | �∇ × �F |/�2 using the steady-
state solutions, like we did in Fig. 3(a). Both quantities were
calculated for driving conditions along the identical dashed
lines in Figs. 4(b) and 6.

Figure 7(b) shows 4|
|2/�2 as a black curve, and | �∇ ×
�F |/�2 as a red curve. Both quantities are unique in the
monostable regime, but double valued in the bistable regime
of �/� >

√
3/2 ≈ 0.87. Since the distributions Pfull (

√
N ) in

the bistability result from dynamics involving two states with
different N , we focus on average quantities. We illustrate the
relation between average and state-dependent quantities in
Fig. 7(b) by plotting the values of 4|
|2/�2 for each state
in the bistability as dashed black curves, and their average
as a solid black curve. For brevity, we only plot the average
| �∇ × �F |/�2 as a red curve.

Overall, Fig. 7(b) shows that 4|
|2/�2 and | �∇ × �F |/�2

depend on �/� in a similar way as ε does. This indicates
that deviations from the equilibrium Boltzmann distribu-
tion are indeed associated with the nonconservative force.
Differences between 4|
|2/�2 and | �∇ × �F |/�2 follow from
the fact that the nonconservative force arises from a nonvan-
ishing coupling 
 between αR and αI , but the curl of F is not
fully determined by 
. This can be recognized by rewriting
Eq. (5) as | �∇ × �F |/� = |2� − 4UN | = | − 2
 − 2UN |. The
extra −2UN term, which depends on the driving strength in

a nonlinear way, results in differences between red and black
curves in Fig. 7(b).

Next we assess whether the noise strength affects ε, and
hence the accuracy of our effective equilibrium description.
In Fig. 7(a) we plot ε as a function of �/� for four different
D. For small �/�, ε increases with D. This is expected since
noise drives the system away from the path  on which Vapp

is defined. Interestingly, however, ε decreases with D for
�/� � 0.9. The stochastic force suppresses the effects of the
nonconservative force in this regime, and the accuracy of our
effective equilibrium description in terms of Vapp improves. In
the next section we offer an explanation for this effect in view
of the phase portrait of the system.

While Pfull (
√

N ) strongly deviates from PBol(
√

N ) deep
in the bistable regime, the deviation is quite small close to
the bifurcation at �/� = √

3/2 ≈ 0.87. Notice in Fig. 7(a)
that ε ≈ 0.1 around �/� = 0.9. The small (∼10%) devia-
tion from equilibrium behavior justifies our claim that Vapp

approximately captures the full system’s dynamics. This is
an important result because most of the interesting physics
occurs near the bifurcation.

VII. EXCEPTIONAL-LIKE POINT
FOR THE FLUCTUATIONS

Here we pursue an understanding of the physics underlying
the limited validity range of the scalar potential Vapp. To this
end, we analyze the spectrum of small fluctuations on top
of the steady state. We perform a standard linear stability
analysis as discussed in Refs. [39,52], for example. Planar
cavities admit qualitatively similar stability analyses [62].

Consider the effect of adding a small fluctuation δα =
δαR + iδαI to the light field, i.e., let α → α + δα in Eq. (1).
By only retaining terms that are linear in δα, we get the
following equation of motion for the fluctuations:(

δα̇R

δα̇I

)
=

( −�
2 + 2UαRαI U (α2

R + 3α2
I ) − �

� − U (3α2
R + α2

I ) −�
2 − 2UαRαI

)(
δαR

δαI

)
.

(12)

Equation (12) has solutions of the form

�δα = �ηeλt , (13)

where �η are the eigenvectors and λ the eigenvalues of the 2 ×
2 matrix in Eq. (12). The eigenvalues

λ± = −�/2 ±
√

G(U,�, N ) (14)

comprise the spectrum of the fluctuations. The function G =
−(� − UN )(� − 3UN ) determines the stability of the fixed
points, and the validity range of the potential Vapp as explained
next.

Figure 8 illustrates how the force exerted on α depends on
the sign of G. Figures 8(a) and 8(b) correspond to positive
and negative G, respectively. Figure 8(a) was obtained for
A/

√
� = 6.95 and �/� = 1, which places the cavity within

the bistability regime and close to the point where the steady-
state intensity N bifurcates [see Fig. 4(b) or Fig. 6]. Stable
and unstable fixed points are represented by white and red
dots, respectively. The unstable fixed point has purely real
eigenvalues with opposite sign, and it is therefore a saddle.
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FFFFFF

FIG. 8. [(a), (b)] Phase portrait of the Kerr-nonlinear cavity eval-
uated at the driving amplitudes and detunings indicated in Fig. 9(a).
Color and arrows represent the force magnitude and direction, re-
spectively. White dots are stable fixed points, and red dots are
unstable fixed points. Green curves indicate the path  where α̇I = 0
and the potential Vapp is defined. Vapp works well in (a) where there
is approximate gradient flow, but not in (b) where nonconservative
forces dominate and lead to spiraling orbits around the stable fixed
points.

The green curve is the path  (where α̇I = 0) along which we
evaluated Vapp. Notice how all force vectors point to the path
, which connects the unstable and stable fixed points. If α

is displaced from  by the stochastic force, the determinis-
tic force ensures its return to . This results in approximate
gradient flow in one dimension, thereby explaining why Vapp

approximately captures the full system’s dynamics close to the
bifurcation. We can also understand this behavior based on the
spectrum of fluctuations. For driving conditions giving G > 0,
the eigenvalues λ± turn out to be real negative numbers. This
results in overdamped fluctuations, stable fixed points which
are sinks, and approximate 1D gradient flow.

The physics is different for G < 0. For example, Fig. 8(b)
shows the phase portrait for A/

√
� = 9 and �/� = 1.38,

which places the cavity within the bistability regime but
further away from the bifurcation. The change in driving con-
ditions has transformed the stable sinks into stable foci. Each
stable focus has a spiraling force field around it, implying that
a fluctuation in one field component (αR or αI ) couples to
the other component. When this coupling is strong, the non-
conservative force dominates, the fluctuations are no longer
overdamped, and any perturbation causes the field to stabilize
at a new orbit in the two-dimensional force field. Clearly, a 1D
scalar potential cannot fully capture the system’s dynamics in
this regime.

Figure 8(b) also reveals why increasing the noise strength
effectively suppresses the effects of the nonconservative force
deep in the bistable regime. The spiraling orbits near the stable
fixed points in Fig. 8(b) are due to the nonconservative force.
When the standard deviation of the noise is small, α mainly
explores those spiraling orbits which are not contained in our
effective 1D potential Vapp. In contrast, when the standard
deviation of the noise is large, α switches between the stable
fixed points more often. In doing so, α mainly passes through
the path  along which Vapp is defined. Hence, for larger
standard deviation of the noise the dynamics more closely
resembles Brownian motion in a 1D scalar potential defined
along .

FIG. 9. (a) Classification of steady-state regimes as in Fig. 4(b),
but for a reduced range of driving amplitude A and detuning �

both referenced to the dissipation �. The orange region close to the
bifurcation is where the eigenvalues λ± in Eq. (14) are purely real,
the field components αR and αI are weakly coupled, and there is a
saddle-sink connection between the fixed points. This is the region
where Vapp works well. The green region is where both eigenvalues of
both states have a nonzero imaginary part. In the gray region, one of
the two states has eigenvalues with nonzero imaginary part. Vapp fails
to properly capture system’s dynamics in the gray and green regions.
(b) Real and (c) imaginary parts of the eigenvalues of the low-density
state along the dashed line in (a). Orange and green regions have the
same meaning as in (a). Real and imaginary parts of the eigenvalues
coalesce at �/� = 1.06, which resembles an exceptional point.

We can further elucidate the above effects by considering
the spectrum of fluctuations. For this purpose, we calculated
the eigenvalues λ± in Eq. (14) in the bistable regime. Based
on the results, we distinguish three regimes indicated by ar-
eas of different color in Fig. 9(a). In the orange region, all
eigenvalues λ± are purely real and negative for both states.
Consequently, the fluctuations are overdamped and there is
a saddle-sink connection between the fixed points. In that
regime,  (defined by α̇I = 0) closely follows the most proba-
ble path between the stable fixed points, and the dynamics is
approximately captured by Vapp defined along . In contrast,
Vapp fails to capture the full system’s dynamics in the gray and
the green regions. This is due to the fact that the eigenvalues
are imaginary (oscillating fluctuations) for one of the steady
states in the gray regions, and for both states in the green
region.

In Figs. 9(b) and 9(c) we plot the real and imaginary parts
of λ±, respectively, for the low-photon-density bistable state.
We plot the eigenvalues as a function of �/� while also
varying A/

√
�, thereby keeping the system along the dashed

line in Fig. 6. The fluctuations are overdamped and effectively
decoupled in the orange region, and oscillatory and strongly
coupled in the green region. Interestingly, real and imaginary
parts of both eigenvalues coalesce at the boundary of these
two regions. To the left (right) side of this coalescence point,
the real (imaginary) parts of λ split while the imaginary (real)
parts cross. This is the typical behavior of the eigenvalues of
a non-Hermitian Hamiltonian describing two linearly coupled
linear modes [63–67]. Thus, the degeneracy point at �/� =
1.06 resembles an exceptional point for the fluctuations.

The exceptional-like point for the fluctuations separates the
regimes in which a bistable cavity can or cannot be approxi-
mately described by the potential Vapp. This is an interesting
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analogy to the non-Hermitian physics of coupled modes.
There, the exceptional point defines the boundary between
weak and strong coupling between the two modes [65]. The
similarity is even more striking when we consider that the mu-
tual coupling between field components αR,I transitions from
weak to strong at �/� = 1.06. Indeed, for �/� = 1.06 we
have 4|
|2 ≈ �2, which corresponds to the boundary between
weak and strong coupling between the field components αR,I .
The point 4|
|2 = �2 is indicated by an orange cross in
Fig. 7(b). The large values of ε around and above this point
in Fig. 7(b) indicate that large deviations from equilibrium
behavior are indeed related to a qualitative change in the
fluctuation spectrum occurring at an exceptional-like point.

In two-mode systems described by a non-Hermitian Hamil-
tonian, the exceptional point (EP) also corresponds to a
parity-time (PT )-symmetry-breaking point [66]. On one side
of the EP, the Hamiltonian is PT symmetric and its eigen-
values are real. On the other side, PT symmetry is broken
and the eigenvalues are complex. A similar situation arises
here, with the crucial difference that the relevant eigenvalues
are of the 2 × 2 Jacobian matrix in Eq. (12) instead of the
Hamiltonian. This points to an interesting relation between
the symmetry properties of the Jacobian and the accuracy of
our effective 1D description in capturing the behavior of the
full 2D system.

The preceding analysis elucidates the physics underlying
the limited validity range of Vapp. In particular, the maximum
values of A/

√
� and �/� for which Vapp remains valid coin-

cide with an exceptional-like point in the spectrum of small
fluctuations on top of the steady-state field. On one side of the
exceptional-like point, the light field experiences approximate
gradient flow towards our 1D path  along which Vapp is de-
fined; an effective equilibrium description is valid in that case.
On the other side of the exceptional-like point, the dynamics
span the full 2D phase space and an effective equilibrium de-
scription in terms of Vapp fails. The exceptional-like point for
the fluctuations also coincides with the transition from weak
to strong coupling between the field components αR,I . Our
results establish interesting connections between the statistical
physics of light in a single-mode nonlinear cavity, the non-
Hermitian physics of its fluctuations, and the physics of strong
versus weak coupling of degrees of freedom. A perspective
arising from identifying these connections is provided in the
next section.

VIII. CONCLUSIONS AND PERSPECTIVES

To summarize, we first showed that stochastic light in
a coherently driven nonlinear optical cavity is mathemati-
cally equivalent to two-dimensional overdamped Langevin
dynamics with a nonconservative force. Only for a linear
cavity driven on resonance there is an exact correspondence
to Brownian motion in a scalar potential: The dissipation
and driving amplitude exactly define the scalar potential, the
noise variance and dissipation define an effective tempera-
ture, and the distribution of light in the cavity follows the
equilibrium Boltzmann distribution. We then showed that the
physics is more subtle when the cavity is nonlinear and driven
off resonance. While an exact potential cannot be defined,
we identified a path  along which the 1D scalar potential

Vapp captures the physics of the 2D system to a very good
approximation. An effective equilibrium description of light
in terms of Vapp is possible even in the highly nonlinear and
off-resonance regime of bistability. The accuracy of this de-
scription was shown to be a nonmonotonic function of the
driving amplitude and frequency. Finally, we connected the
effective equilibrium versus nonequilibrium behavior of the
intracavity field with non-Hermitian physics of its fluctua-
tions. The fluctuation spectrum exhibits an exceptional-like
point at the boundary of the validity range of Vapp.

Our results provide a detailed answer to a fundamental
and long-standing question in resonant optics: Can a sin-
gle noisy electromagnetic mode be understood in terms of
Brownian motion within a scalar potential? While single-
mode cavities have been studied and realized for decades,
the question we addressed has recently acquired increased
relevance. For example, many recent developments in the field
of stochastic thermodynamics [25–27] involve overdamped
Langevin dynamics. Important results about fluctuations of
thermodynamic quantities, the efficiency of stochastic en-
gines, and the precision of information-processing systems
have emerged from understanding overdamped Langevin
dynamics [24,26,27,68,69]. Our work establishes an impor-
tant connection to that field. Single-mode cavities could be
ideal systems for fundamental experiments in stochastic ther-
modynamics. One reason for this is the huge bandwidth
easily accessible with optical systems. For instance, using
a typical single-mode optical cavity with �−1 = 1 ps, one
could measure dynamics spanning 12 orders of magnitude
in time within a second [5,8,34,35,57]; the dynamic range
would be only limited by the memory of the electronics.
One could therefore acquire great statistics about negative
entropy production events, and probe fluctuation theorems
with unprecedented accuracy, using mature optical technolo-
gies. Importantly, the ratio of conservative to nonconservative
forces could be easily tuned by varying the laser power or
frequency, thereby opening new perspectives. Beyond this
fundamental physics perspective, a description of single-mode
cavities in thermodynamic terms also offers intriguing techno-
logical perspectives. For instance, the framework of stochastic
thermodynamics could be used to understand and optimize
resonant optical technologies, like sensors, switches, memo-
ries, and other devices driven by noisy lasers. To that end,
thermodynamic quantities like heat and work would still need
to be defined. The consistency of those definitions with the
first and second laws of thermodynamics would also need to
be verified. We foresee exciting discoveries in that direction,
partly enabled by the ability to understand resonant optical
systems in terms of Langevin dynamics within a potential.

Our results are also relevant in the context of optimiza-
tion problems [16]. Recently, Kyriienko et al. numerically
demonstrated that nonlinear cavity arrays can be used to solve
NP-hard optimization problems in an all-optical way; the
problem of interest is encoded in the intercavity couplings.
If the total deterministic force exerted on the cavity fields
(analogous to the force F in the single-cavity we studied) were
purely conservative, the performance of Kyriienko’s optimizer
could be explained in terms of gradient descent [70]. Indeed,
Leleu et al. explicitly showed that an array of overdamped
Langevin oscillators with cubic nonlinearity driven across a
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bifurcation solves an optimization problem encoded in the in-
teroscillator couplings. However, Leleu’s argument only holds
for a purely conservative force which can be derived from a
scalar potential. In contrast, the optimizers of Kyriienko et al.
involve nonconservative forces. In this context, our results
offer a plausible explanation for the surprisingly high success
probabilities Kyriienko et al. found for their optimizer: While
the nonconservative force of optical cavity arrays is strictly
nonzero, its magnitude may be small. We furthermore suspect
that, as for the single-cavity case, the full dynamics of each
cavity in its 2D phase space might be captured by an effec-
tive 1D approximate potential. For the optimizer to succeed,
effective equilibrium behavior (i.e., gradient flow) is mainly
needed near the bifurcation, which is again similar to what
we have observed for a single cavity in this article. While
these speculations remain to be checked, our findings suggest
that (approximate) gradient descent may be the mechanism
underlying the surprisingly successful performance of cavity
array optimizers.
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APPENDIX A: ASSUMPTIONS AND APPROXIMATIONS
UNDERLYING OUR SINGLE-MODE MODEL

Equation (1) is valid when a single mode is well iso-
lated, spectrally and spatially, from all other modes in
the cavity. Otherwise, spatial patterns can arise due to the
nonlinearity [62]. A mode can be isolated through strong
three-dimensional optical confinement within a high-finesse
cavity. Confinement along the optical axis is trivially accom-
plished by high-reflectivity mirrors. Lateral confinement can
be achieved by using a micron-scale concave mirror [71,72],
etching a micropillar out of a planar cavity [73], or making
mesas within a planar cavity [74]. Results of numerous exper-
iments with such microcavities are extremely well reproduced
using single-mode descriptions [5,8,34,35,57,58].

One can arrive at our model, Eq. (1), starting from a
quantum description by making the truncated Wigner approx-
imation (TWA) [75]. Like in the mean-field approximation, in
the TWA boson operators â and â† are replaced by their mean
values: â → 〈â〉 = α and â† → 〈â†〉 = α∗. The TWA goes be-
yond a mean-field description by accounting for fluctuations
via the classical noise terms ζR,I .

The TWA is accurate when the single-photon nonlinearity
is weak: U � �. Consequently, the mean intracavity photon
number N = |α|2 should largely exceed one in the bistable
regime. While several recent works made progress towards
realizing single-mode cavities with U ∼ � [32,33,76,77],
most optical cavities still operate in the U � � regime. The
accuracy of the TWA in this regime has been verified many
times, through quantitative agreement with experiments and

FIG. 10. (a) Phase portrait of a linear cavity driven off resonance
with �/� = 5 and A/

√
� = 10. (b) Time evolution of the forces FR

and FI acting on the real and imaginary parts of the field, namely, αR

and αI , respectively. The dashed red curve is the evolution of FR in a
linear cavity driven on resonance, i.e., � = 0.

full quantum calculations [75]. For our system, PDFs calcu-
lated from the quantum master equation or the corresponding
Fokker-Planck equation exactly match those calculated from
sufficiently many and long solutions to the Langevin-
type equation obtained via the TWA [Eq. (1)], provided
U � � [19].

As explained in the main text, the stochastic terms ζR and ζI

are mutually uncorrelated and each is δ correlated. Moreover,
ζR and ζI are multiplied by the same constant D such that both
DζR and DζI have standard deviation D. In this way, using
one pair of stochastic terms we account for two noise sources
expected to influence any coherently driven cavity. One source
of noise is fluctuations in the driving laser amplitude and
phase. Since the coherent state of a laser is characterized by
a symmetric two-dimensional Gaussian distribution in phase
space, the stochastic terms DζR and DζI need to be uncor-
related and have equal variance to account for noise in the
driving laser. The second source of noise we account for is
fluctuations in the intracavity field due to its interaction with
a memoryless environment. As usual, we assume that these
fluctuations are random in phase. This demands, once again,
for the stochastic terms to be uncorrelated and have equal
variance. While one could describe the laser noise and the
dissipation-induced noise using two distinct pairs of stochastic
terms, for simplicity we can use only one pair because all
noises are additive, Gaussian, white, and mutually uncorre-
lated. The noises are white, meaning ζR,I are each δ correlated,
because of the Markov approximation. This corresponds to an
instantaneous system-environment interaction. The Markov
approximation holds for both the driving laser and the cavity
it drives, which is our system of interest. Finally, we note
that laser shot noise and cavity dissipation set a lower bound
for the noise variance D2 [75]. However, more noise can be
intrinsically present or added in experiments [34,35].

APPENDIX B: LINEAR CAVITY DRIVEN OFF
RESONANCE

Figure 10 illustrates the physics of a linear cavity driven
far off resonance, with �/� = 5. Since U = 0 and �/� is
large, | �∇ × �F |/�2 is also large and the nonconservative force
dominates the dynamics. Hence, the phase portrait of the
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system, shown in Fig. 10(a), displays spiraling force vectors
as expected for a rotational force field. This spiraling behavior
precludes a description in terms of a scalar potential. Next,
Fig. 10(b) illustrates the dynamics when α is initialized far
from the fixed point. Black and purple curves represent the
forces FR and FI , which act on αR and αI , respectively. For
reference, the dashed red curve shows the evolution of FR for
a linear cavity driven on resonance. Notice how the envelopes
of FR and FI in the off-resonance case decay at the same rate as

FR in the on-resonance case. However, while for on-resonance
driving the force decays exponentially (as expected for a
gradient flow system), for off-resonance driving the forces
decay in an oscillatory fashion. The oscillations imply energy
exchange between αR and αI , as expected for two strongly
coupled oscillators. Overall, Fig. 10 elucidates the relation
between nonconservative dynamics and strong coupling be-
tween oscillators. This was already suggested in Fig. 7, but the
absence of nonlinearity in Fig. 10 further clarifies the relation.
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A. İmamoğlu, Towards polariton blockade of confined exciton-
polaritons, Nat. Mater. 18, 219 (2019).

013154-11

https://doi.org/10.1007/BF01400474
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1103/PhysRevA.96.043809
https://doi.org/10.1038/s41567-017-0020-9
https://doi.org/10.1103/PhysRevX.10.011039
https://doi.org/10.1088/2040-8978/18/10/104005
https://doi.org/10.1103/PhysRevA.93.023821
https://doi.org/10.1088/0034-4885/80/1/016401
https://doi.org/10.1103/PhysRevLett.123.173601
https://doi.org/10.1103/PhysRevA.95.043826
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1103/PhysRevB.99.195301
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1103/PhysRevA.35.1729
https://doi.org/10.1103/PhysRevA.39.4675
https://doi.org/10.1103/PhysRevA.42.627
https://doi.org/10.1103/PhysRevApplied.13.044017
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevX.7.021051
https://doi.org/10.1103/PhysRevX.5.031028
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevLett.123.110604
https://doi.org/10.1103/PhysRevA.103.033711
https://doi.org/10.1038/s41563-019-0282-y


K. J. H. PETERS et al. PHYSICAL REVIEW RESEARCH 5, 013154 (2023)

[33] G. Muñoz-Matutano, A. Wood, M. Johnsson, X. Vidal, B. Q.
Baragiola, A. Reinhard, A. Lemaître, J. Bloch, A. Amo, G.
Nogues et al., Emergence of quantum correlations from inter-
acting fibre-cavity polaritons, Nat. Mater. 18, 213 (2019).

[34] H. Abbaspour, S. Trebaol, F. Morier-Genoud, M. T. Portella-
Oberli, and B. Deveaud, Stochastic Resonance in Collective
Exciton-Polariton Excitations inside a GaAs Microcavity, Phys.
Rev. Lett. 113, 057401 (2014).

[35] K. J. H. Peters, Z. Geng, K. Malmir, J. M. Smith, and S. R. K.
Rodriguez, Extremely Broadband Stochastic Resonance of
Light and Enhanced Energy Harvesting Enabled by Memory
Effects in the Nonlinear Response, Phys. Rev. Lett. 126, 213901
(2021).

[36] A. A. P. Trichet, J. Foster, N. E. Omori, D. James, P. R. Dolan,
G. M. Hughes, C. Vallance, and J. M. Smith, Open-access
optical microcavities for lab-on-a-chip refractive index sensing,
Lab Chip 14, 4244 (2014).

[37] C. Vallance, A. A. P. Trichet, D. James, P. R. Dolan, and
J. M. Smith, Open-access microcavities for chemical sensing,
Nanotechnology 27, 274003 (2016).

[38] M. H. Bitarafan and R. G. DeCorby, On-chip high-finesse
Fabry-Pérot microcavities for optical sensing and quantum in-
formation, Sensors 17, 1748 (2017).

[39] S. R. K. Rodriguez, Enhancing the Speed and Sensitivity of
a Nonlinear Optical Sensor with Noise, Phys. Rev. Appl. 13,
024032 (2020).

[40] K. J. H. Peters and S. R. K. Rodriguez, Exceptional Precision of
a Nonlinear Optical Sensor at a Square-Root Singularity, Phys.
Rev. Lett. 129, 013901 (2022).

[41] A. A. P. Trichet, P. R. Dolan, D. James, G. M. Hughes, C.
Vallance, and J. M. Smith, Nanoparticle trapping and char-
acterization using open microcavities, Nano Lett. 16, 6172
(2016).

[42] L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M.
Weiner, and M. Qi, An all-silicon passive optical diode, Science
335, 447 (2012).

[43] Y. Shi, Z. Yu, and S. Fan, Limitations of nonlinear optical iso-
lators due to dynamic reciprocity, Nat. Photonics 9, 388 (2015).

[44] D. L. Sounas, J. Soric, and A. Alù, Broadband passive isolators
based on coupled nonlinear resonances, Nat. Electron. 1, 113
(2018).

[45] S. R. K. Rodriguez, V. Goblot, N. C. Zambon, A. Amo, and J.
Bloch, Nonreciprocity and zero reflection in nonlinear cavities
with tailored loss, Phys. Rev. A 99, 013851 (2019).

[46] K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M.
Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù et al.,
Inverse-designed non-reciprocal pulse router for chip-based
lidar, Nat. Photonics 14, 369 (2020).

[47] M. Cotrufo, S. A. Mann, H. Moussa, and A. Alù, Nonlinearity-
induced nonreciprocity—Part I, IEEE Trans. Microw. Theory
Tech. 69, 3569 (2021).

[48] X.-W. Xu, Y. Li, B. Li, H. Jing, and A.-X. Chen, Nonreciprocity
via Nonlinearity and Synthetic Magnetism, Phys. Rev. Appl. 13,
044070 (2020).

[49] L. De Santis, C. Antón, B. Reznychenko, N. Somaschi, G.
Coppola, J. Senellart, C. Gómez, A. Lemaître, I. Sagnes,
A. G. White et al., A solid-state single-photon filter, Nat.
Nanotechnol. 12, 663 (2017).

[50] H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard,
J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester,

Fiber-Coupled Cavity-QED Source of Identical Single Photons,
Phys. Rev. Appl. 9, 031002(R) (2018).

[51] N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Löbl,
A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig
et al., A bright and fast source of coherent single photons, Nat.
Nanotechnol. 16, 399 (2021).

[52] P. D. Drummond and D. F. Walls, Quantum theory of optical
bistability. I. Nonlinear polarisability model, J. Phys. A 13, 725
(1980).

[53] D. S. Lemons and A. Gythiel, Paul Langevin’s 1908 paper “On
the theory of Brownian motion” [“sur la théorie du mouvement
brownien,” C. R. Acad. Sci. (paris) 146, 530–533 (1908)], Am.
J. Phys. 65, 1079 (1997).

[54] D. T. Gillespie, The mathematics of Brownian motion and John-
son noise, Am. J. Phys. 64, 225 (1996).

[55] A. C. Barato, E. Roldán, I. A. Martínez, and S. Pigolotti, Arc-
sine Laws in Stochastic Thermodynamics, Phys. Rev. Lett. 121,
090601 (2018).

[56] V. Ramesh, K. Peters, and S. Rodriguez, Arcsine laws of light,
arXiv:2208.07432.

[57] Z. Geng, K. J. H. Peters, A. A. P. Trichet, K. Malmir, R.
Kolkowski, J. M. Smith, and S. R. K. Rodriguez, Universal
Scaling in the Dynamic Hysteresis, and Non-Markovian Dy-
namics, of a Tunable Optical Cavity, Phys. Rev. Lett. 124,
153603 (2020).

[58] B. Garbin, A. Giraldo, K. J. H. Peters, N. G. R.
Broderick, A. Spakman, F. Raineri, A. Levenson, S. R. K.
Rodriguez, B. Krauskopf, and A. M. Yacomotti, Sponta-
neous Symmetry Breaking in a Coherently Driven Nanopho-
tonic Bose-Hubbard Dimer, Phys. Rev. Lett. 128, 053901
(2022).

[59] S. Kiesewetter, R. Polkinghorne, B. Opanchuk, and P. D.
Drummond, XSPDE: Extensible software for stochastic equa-
tions, SoftwareX 5, 12 (2016).

[60] E. Estrecho, T. Gao, N. Bobrovska, D. Comber-Todd, M. D.
Fraser, M. Steger, K. West, L. N. Pfeiffer, J. Levinsen,
M. M. Parish, T. C. H. Liew, M. Matuszewski, D. W. Snoke,
A. G. Truscott, and E. A. Ostrovskaya, Direct measurement
of polariton-polariton interaction strength in the Thomas-Fermi
regime of exciton-polariton condensation, Phys. Rev. B 100,
035306 (2019).

[61] A. I. Lvovsky and M. G. Raymer, Continuous-variable op-
tical quantum-state tomography, Rev. Mod. Phys. 81, 299
(2009).

[62] F. Arecchi, S. Boccaletti, and P. Ramazza, Pattern forma-
tion and competition in nonlinear optics, Phys. Rep. 318, 1
(1999).

[63] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge
University Press, Cambridge, U.K., 2011).

[64] W. D. Heiss, The physics of exceptional points, J. Phys. A 45,
444016 (2012).

[65] S. R.-K. Rodriguez, Classical and quantum distinctions be-
tween weak and strong coupling, Eur. J. Phys. 37, 025802
(2016).

[66] M.-A. Miri and A. Alù, Exceptional points in optics and pho-
tonics, Science 363, eaar7709 (2019).

[67] M. Soriente, T. L. Heugel, K. Omiya, R. Chitra, and O.
Zilberberg, Distinctive class of dissipation-induced phase tran-
sitions and their universal characteristics, Phys. Rev. Res. 3,
023100 (2021).

013154-12

https://doi.org/10.1038/s41563-019-0281-z
https://doi.org/10.1103/PhysRevLett.113.057401
https://doi.org/10.1103/PhysRevLett.126.213901
https://doi.org/10.1039/C4LC00817K
https://doi.org/10.1088/0957-4484/27/27/274003
https://doi.org/10.3390/s17081748
https://doi.org/10.1103/PhysRevApplied.13.024032
https://doi.org/10.1103/PhysRevLett.129.013901
https://doi.org/10.1021/acs.nanolett.6b02433
https://doi.org/10.1126/science.1214383
https://doi.org/10.1038/nphoton.2015.79
https://doi.org/10.1038/s41928-018-0025-0
https://doi.org/10.1103/PhysRevA.99.013851
https://doi.org/10.1038/s41566-020-0606-0
https://doi.org/10.1109/TMTT.2021.3079250
https://doi.org/10.1103/PhysRevApplied.13.044070
https://doi.org/10.1038/nnano.2017.85
https://doi.org/10.1103/PhysRevApplied.9.031002
https://doi.org/10.1038/s41565-020-00831-x
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1119/1.18725
https://doi.org/10.1119/1.18210
https://doi.org/10.1103/PhysRevLett.121.090601
http://arxiv.org/abs/arXiv:2208.07432
https://doi.org/10.1103/PhysRevLett.124.153603
https://doi.org/10.1103/PhysRevLett.128.053901
https://doi.org/10.1016/j.softx.2016.02.001
https://doi.org/10.1103/PhysRevB.100.035306
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1016/S0370-1573(99)00007-1
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1088/0143-0807/37/2/025802
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1103/PhysRevResearch.3.023100


SCALAR POTENTIALS FOR LIGHT IN A CAVITY PHYSICAL REVIEW RESEARCH 5, 013154 (2023)

[68] V. Y. Chernyak, M. Chertkov, and C. Jarzynski, Path-integral
analysis of fluctuation theorems for general Langevin processes,
J. Stat. Mech. Theory Exp. (2006) P08001.

[69] R. Pan, T. M. Hoang, Z. Fei, T. Qiu, J. Ahn, T. Li, and H. T.
Quan, Quantifying the validity and breakdown of the over-
damped approximation in stochastic thermodynamics: Theory
and experiment, Phys. Rev. E 98, 052105 (2018).

[70] K. P. Kalinin and N. G. Berloff, Polaritonic network as a
paradigm for dynamics of coupled oscillators, Phys. Rev. B 100,
245306 (2019).

[71] D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W.
Hänsch, and J. Reichel, A fiber Fabry-Pérot cavity with high
finesse, New J. Phys. 12, 065038 (2010).

[72] A. A. P. Trichet, P. R. Dolan, D. M. Coles, G. M. Hughes, and
J. M. Smith, Topographic control of open-access microcavities
at the nanometer scale, Opt. Express 23, 17205 (2015).

[73] D. Bajoni, E. Peter, P. Senellart, J. L. Smirr, I. Sagnes, A.
Lemaître, and J. Bloch, Polariton parametric luminescence in
a single micropillar, Appl. Phys. Lett. 90, 051107 (2007).

[74] O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. I. Kaitouni, J. L.
Staehli, F. Morier-Genoud, and B. Deveaud, Polariton quantum
boxes in semiconductor microcavities, Appl. Phys. Lett. 88,
061105 (2006).

[75] I. Carusotto and C. Ciuti, Quantum fluids of light, Rev. Mod.
Phys. 85, 299 (2013).

[76] E. Togan, H.-T. Lim, S. Faelt, W. Wegscheider, and A.
Imamoglu, Enhanced Interactions between Dipolar Polaritons,
Phys. Rev. Lett. 121, 227402 (2018).

[77] A. V. Zasedatelev, A. V. Baranikov, D. Sannikov, D. Urbonas,
F. Scafirimuto, V. Y. Shishkov, E. S. Andrianov, Y. E. Lozovik,
U. Scherf, T. Stöferle et al., Single-photon nonlinearity at room
temperature, Nature (London) 597, 493 (2021).

013154-13

https://doi.org/10.1088/1742-5468/2006/08/P08001
https://doi.org/10.1103/PhysRevE.98.052105
https://doi.org/10.1103/PhysRevB.100.245306
https://doi.org/10.1088/1367-2630/12/6/065038
https://doi.org/10.1364/OE.23.017205
https://doi.org/10.1063/1.2435515
https://doi.org/10.1063/1.2172409
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/PhysRevLett.121.227402
https://doi.org/10.1038/s41586-021-03866-9

