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Exceptional points (EPs)—spectral singularities of non-Hermitian linear systems—have recently
attracted interest for sensing. While initial proposals and experiments focused on enhanced sensitivities
neglecting noise, subsequent studies revealed issues with EP sensors in noisy environments. Here we
propose a single-mode Kerr-nonlinear resonator for exceptional sensing in noisy environments. Based on
the resonator’s dynamic hysteresis, we define a signal that displays a square-root singularity reminiscent of
an EP. However, our sensor has crucial fundamental and practical advantages over EP sensors: the signal-
to-noise ratio increases with the measurement speed, the square-root singularity is easily detected through
intensity measurements, and both sensing precision and information content of the signal are enhanced
around the singularity. Our sensor also overcomes the fundamental trade-off between precision and
averaging time characterizing all linear sensors. All these unconventional features open up new
opportunities for fast and precise sensing using hysteretic resonators.
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In 2014, Wiersig proposed using a non-Hermitian degen-
eracy known as an exceptional point (EP) for sensing [1]. An
EP occurs when a pair of eigenvalues and eigenvectors of a
non-Hermitian Hamiltonian coalesce. Two coupled linear
resonators constitute the typical system where EPs have
been observed [2–10] and used for sensing [11–14]. Setting
ℏ ¼ 1, the coupled resonators are described by a 2 × 2
Hamiltonian with complex frequencies ω̃j (j ¼ 1, 2) in the
diagonal and coupling constant g in the off diagonal. The
Hamiltonian’s eigenvalues are
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with ω̃av ¼ ðω̃1 þ ω̃2Þ=2 the average complex frequency
and Δ̃ ¼ ω̃1 − ω̃2 the complex detuning [15]. Notice the
square-root singularity for 2g=Δ̃ ¼ �i, where the eigenval-
ues ωþ and ω− coalesce; this is the EP. At the EP, a pertu-
rbation to a resonance frequency [i.e., ℜ½ω̃j� → ℜ½ω̃j� þ ϵ
(j ¼ 1 or 2)] results in a splitting ℜ½ωþ − ω−� ∝

ffiffiffi
ϵ

p
.

Essentially, Wiersig proposed using this frequency splitting
and the associated linewidth splittingℑ½ωþ − ω−� as signals
for sensing.Unlike conventional sensorswhere signals scale
linearly with ϵ [16–22], the

ffiffiffi
ϵ

p
scaling near an EP promised

greater sensitivities for small ϵ [1].
Wiersig’s proposal met great enthusiasm and skepticism

recently. On one hand, experimental claims of enhanced
sensitivities [11–13] and proposed applications [14,23–31]
of EP sensors have generated excitement [32,33]. On the
other hand, it has been argued that the precision of EP
sensors is degraded by noise [34–36]. The observation of
enhanced fluctuations near an EP supports this criticism

[37]. The foregoing debate reveals that the sensitivity, i.e.,
scaling of signal with perturbation, is insufficient to
characterize sensing performance. Particularly important
are the effects of noise, which ultimately determine the
magnitude of the perturbation that can be detected within a
certain measurement time.
In this Letter we propose and numerically demonstrate

optical sensing beyond the constraints of linear sensors
using a single coherently driven Kerr-nonlinear resonator.
Wepropose tomeasure the splitting in transmitted intensities
at the endpoints of a hysteresis cycle. This intensity splitting
scales with the square root of the perturbation strength.
Remarkably, the sensing precision and information content
of the signal are enhanced around the square-root singu-
larity. Our sensor also exhibits a signal-to-noise ratio that
increases with the measurement speed, and an anomalous
scaling of the precision with the averaging time. Crucial for
practical applications, our approach only requires mono-
chromatic intensity measurements, and avoids the cumber-
some and error-prone task of fitting spectral line shapes to
extract complex eigenvalues (as done in EP sensors).
Our sensor can be realized using Fabry-Pérot [38–47],

whispering-gallery mode [17,18,21,22,48], ring [49–51],
photonic crystal [52–57], or any cavity architecture where
one mode is spectrally distant from all other modes and
probes an intensity-dependent refractive index. In a frame
rotating at the driving frequency ω, the intracavity field α
satisfies
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Δ ¼ ω − ω0 is the laser’s detuning from the resonance
frequency ω0. The total loss rate Γ ¼ γ þ κL þ κR includes
intrinsic loss at rate γ and leakage through “left” and “right”
input-output ports at rates κL and κR. U is the Kerr
nonlinearity strength. DξðtÞ ¼ D½ξ1ðtÞ þ iξ2ðtÞ�=

ffiffiffi
2

p
rep-

resents Gaussian white noise with variance D2 in the field
quadratures. ξjðtÞ have zero mean [hξjðtÞi ¼ 0] and corre-
lation hξjðtÞξkðtþ t0Þi ¼ δj;kδðt0Þ. The validity of Eq. (2)
for U ≪ Γ (henceforth assumed) has been verified many
times, through quantitative agreement with experiments
and full quantum calculations [58].
As usual in optical sensing [17,18,21,22,40,42,45,48],

our goal is to detect a perturbation ϵ to ω0. For this purpose,
we define the signal in a way that is inspired (but not
restricted) by the behavior of the steady-state solutions to
Eq. (2) ( _α ¼ D ¼ 0) near the onset of bistability. There,
two stable states with different intracavity intensity N ¼
jαj2 exist at a single driving condition. Figure 1(a) shows
bistability for Δ ¼ Γ and variable F=

ffiffiffi
Γ

p
. Solid and dotted

gray curves are stable and unstable steady states, respec-
tively. The bistability range is bound by the turning points
Ñ� [red circles in Fig. 1(a)], obtained by setting
djFj2=dN ¼ 0 in Eq. (2):

Ñ� ¼ 2Δ
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Notice the resemblance to Eq. (1): Ñ� are defined by a
square-root function with singularity at the critical detuning
Δc ¼

ffiffiffi
3

p
Γ=2. Ñ� coalesce at Δc, just like ω� coalesce at

the EP. This suggests using Ñþ − Ñ− as a signal for
sensing. However, Ñ� are steady-state solutions expected
in quasistatic protocols only. Fast protocols display no
sharp turns in N thereby making Ñ� ill defined. This is
illustrated by the thin black curves in Fig. 1(a), obtained by
scanning F=

ffiffiffi
Γ

p
from 0 to 10 and back within a time

T ¼ 104=Γ. Clearly, Ñ� cannot be used for fast sensing.
We therefore turn our attention to the crossing points N�,
where upward and downward scans intersect. N� are
marked in Fig. 1(a) by purple (black) circles for the
dynamic (static) case.
Figure 1(b) compares the crossing points N� to the

turning points Ñ� as Δ (and hence ϵ) varies. For adiabatic
protocols following the steady-state solutions, N� (black
curves) and Ñ� (red curves) both bifurcate at Δc. However,
N� offer greater sensitivity in adiabatic protocols since
Nþ − N− ≥ Ñþ − Ñ−. More importantly, N� are well
defined and display the desired square-root scaling even
for nonadiabatic protocols. At high speeds the square-root
singularity lies below Δc, where there is no bistability or
static hysteresis; see where the purple curve bifurcates in
Fig. 1(b). Nonetheless, dynamic hysteresis still emerges
[43,59], and the intensity splitting δN ¼ Nþ − N− can be

unambiguously defined as a signal for fast sensing.
Practically, δN is determined by measuring the time-
dependent intensities Nf and Nb when ramping F forward
and backward, respectively. Nþ and N− are then the first
values of N at which Nb − Nf ¼ 0 when F increases and
decreases, starting from the center of the hysteresis where
Nb − Nf is maximum.
Figure 1(c) shows how δN scales with Δ=Γ for two

nonadiabatic protocols, one with period T ¼ 2000=Γ and
another with T ¼ 104=Γ. The static δN, corresponding to
T → ∞, is shown for reference. All δN are fitted (see
dashed gray curves) with square-root functions near the
singularity at ΔSS; this is the point where Nþ and N−
coalesce. The excellent fits evidence that the desired
square-root scaling persists for detunings below the static
bistability threshold Δc and for highly nonadiabatic pro-
tocols. Actually, our approach works for any positive
detuning, but Δ < Δc is advantageous for fast sensing
because ΔSS decreases with speed as Fig. 1(c) shows.
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FIG. 1. (a) Intracavity photon number N versus driving
amplitude F referenced to the loss rate Γ. The laser-cavity
detuning is Δ ¼ Γ, and there is no noise. Gray solid and dotted
curves represent stable and unstable steady states, respectively.
Thin black curves represent the dynamic hysteresis obtained by
linearly scanning F=

ffiffiffi
Γ

p
from 0 to 10 and back within a time

T ¼ 104=Γ. Red open circles indicate the turning points Ñ�.
Purple open circles indicate the crossing points N� for the
dynamic case, which are used in Figs. 2 and 3 as a signal for
sensing. Black open circles indicate N� in the adiabatic limit
ΓT → ∞. Inset: schematic of the proposed sensor, i.e., a Kerr-
nonlinear resonator. (b) Red curves are the turning points Ñ�, and
black curves are the crossing points N�, both in the adiabatic
limit. N� in the dynamic case are shown in purple. Parameter
values: Γ ¼ 1, γ ¼ Γ=6, κL ¼ Γ=2, κR ¼ Γ=3, U ¼ Γ=100.
(c) Solid curves represent the splitting δN ¼ Nþ − N− proposed
as a signal for sensing, as function of Δ=Γ. Two curves
correspond to scans FðtÞ within different time T, and the other
curve corresponds to the adiabatic limit. Dashed lines are square-
root fits as explained in the text.

PHYSICAL REVIEW LETTERS 129, 013901 (2022)

013901-2



However, there is a trade-off between measurement speed
and sensitivity: faster protocols decrease the prefactor in the
square-root scaling of δN with Δ. In the Supplemental
Material we quantify this trade-off and discuss the role of
model parameters in general [60].
Next we assess the effects of noise by numerically

solving Eq. (2) using the xSPDE MATLAB toolbox [62].
Equation (2) only contains additive noise ξðtÞ, representing
fluctuations in the laser’s amplitude and phase and dis-
sipation-induced fluctuations of the intracavity field; the
effect of detuning noise is discussed in the Supplemental
Material [60]. We consider a single hysteresis cycle of
duration T, which also determines the measurement time.
Figure 2(a) shows the crossing points N� comprising δN,
and the standard deviation σδN of δN, both as a function of
ΓT. The calculations are done for fixed Δ ¼ 0.7Γ and
D=Favg ¼ 1=50, with Favg the average driving amplitude.
σδN is obtained by calculating δN for 1200 different noise
realizations.
Figure 2(a) shows that Nþ and N− are approximately

equal for large ΓT. Indeed, there is no hysteresis in the
adiabatic limit for the selected Δ ¼ 0.7Γ. Therefore, con-
trary to conventional sensors, our sensor’s performance can
be enhanced by reducing the measurement time T. The
signal δN ¼ Nþ − N− only becomes appreciable below a
critical time TSS, where the system crosses the square-root
singularity. This way of approaching a square-root singu-
larity (by varying the ramp time) is advantageous over the

usual approach in EP sensors, where the detuning and/or
the losses of the resonators [2,5,6,8,10] are slowly varied.
Our approach can be orders of magnitude faster thanks to
the availability of high-frequency amplitude modulators.
Figure 2(a) also shows how the fluctuations in δN scale

with T. The peak in σδN at ΓT ≈ 4 × 103 evidences
enhanced fluctuations around the square-root singularity.
This peak is reminiscent of the enhanced fluctuations at an
EP [37], which are at the heart of the aforementioned
debate [34–36,63]. While this effect seems discouraging,
our statistical analysis below proves that a sensing advan-
tage remains at the square-root singularity.
Figure 2(b) shows the signal-to-noise ratio SNR ¼

δN=σδN , following a double power law decay with ΓT.
The transition between power laws occurs around TSS,
where signal fluctuations are enhanced. The SNR follows a
similar scaling with ΓT as the dynamic hysteresis area
[43,64], resulting in stronger signals at high speeds.
However, the laser power needed to cross the full hysteresis
range (and hence to measure the signal) also increases with
the speed [64]. Hence, there is a trade-off between energy
consumption and measurement speed.
Figures 2(a) and 2(b) suggest that, if detection speed is

most important and power is available, the cycle time T
should be reduced as much as possible and thereby
disregard the square-root singularity location. However,
for many sensors, precision is also important. A precise
measurement is one in which the mean change in the signal
due to the perturbation is large compared with the uncer-
tainty in that measurement. In this vein, we define χ ¼
ðδNϵ − δN0Þ=ðσ0 þ σϵÞ to quantify the precision. δNϵ and
δN0 are the mean splitting measured for the perturbed and
unperturbed cavity, respectively. σ0 and σϵ are standard
deviations corresponding to those signals. Thus, χ quan-
tifies the mean change in the signal relative to the
measurement uncertainty.
Figure 2(c) shows χ versus ΓT. For each T, we

performed 12 × 103 simulations with different realizations
of the noise for a perturbed (ϵ ¼ Γ=100) and an unper-
turbed cavity. We then calculated χ based on the means and
standard deviations of the distributions of signals measured
for the two cavities. Interestingly, the peak in χ approx-
imately coincides with TSS, thereby demonstrating the
precision enhancement by the square-root singularity.
While χ remains below 1 (a commonly used detection
threshold) in Fig. 2(c), a reliable detection strategy can still
be constructed for small χ by allowing a greater probability
of missed detection [65]. Overall, Fig. 2(c) reveals a trade-
off between measurement time (defined by T) and pre-
cision. If precision matters most, one should modulate F
with period T ≈ TSS. However, if speed is crucial, T < TSS
can be selected.
In the Supplemental Material we show that our nonlinear

sensor can compete or outperform a linear sensor in certain
parameter regimes [60]. For the comparison, we took equal
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FIG. 2. (a) Black circles are the crossing points N� comprising
the signal δN ¼ Nþ − N−. Blue crosses are the standard
deviation of δN, i.e., σδN . Both δN and σδN are shown for
variable ramp time T referenced to Γ. (b) Signal-to-noise ratio
δN=σδN versus ΓT. (c) Precision figure of merit χ versus ΓT.
Parameters are as in Fig. 1, with Δ=Γ ¼ 0.7 and D=Favg ¼ 1=50.
Each point in (a),(b) is calculated based on 1200 individual cycles
with different noise realizations. Error bars indicate 1 standard
deviation of the mean. Errors in (c) are based on ten calculations
of χ, each calculation involving 1200 noise realizations.
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dissipation, noise strength, detuning, and average driving
power. However, a direct comparison is impossible for two
reasons mainly. First, our sensor’s performance depends on
the parameterU, absent in linear sensors. Second, for linear
resonators the SNR increases with power, but for our sensor
mainly the cycle time T determines the SNR. Despite these
differences, our results demonstrate that our sensing strat-
egy can compete with linear sensors. Crucially, our claim
does not rely on static sensitivities only, and our approach
embraces nonlinearities which typically degrade the pre-
cision of linear sensors.
Next we assess our sensor’s performance using infor-

mation theory. We are interested in the mutual information
between a perturbation ϵ and its induced signal shift
S ¼ δNϵ − δN0, given by

Iðϵ;SÞ ¼
X

s∈S

X

ε∈E
pðϵ;SÞðε; sÞ log

pðϵ;SÞðε; sÞ
pϵðεÞpSðsÞ

: ð4Þ

pϵðεÞ and pSðsÞ are marginal distributions representing our
uncertainty in the perturbation and signal, respectively, and
pðϵ;SÞðε; sÞ is their joint probability distribution. Iðϵ;SÞ
quantifies the information ϵ and S share, or how much
knowledge of S reduces uncertainty of ϵ [66].
We model our uncertainty in the perturbation by defining

pϵðεÞ as a Gaussian distribution with mean Γ=100 and
standard deviation Γ=1000. Then, we determine pSðsÞ by
numerically calculating S using 1200 different noise seeds
for each cycle time ΓT. This involves calculating δN for the
unperturbed (detuning Δ0) and perturbed (Δϵ ¼ Δ0 þ ϵ)
cavity, withΔ0 ¼ 0.7Γ and ϵ drawn from pϵðεÞ. Finally, we
determine pðϵ;SÞðε; sÞ based on the value of S for each
member of pϵðεÞ.
Figure 2(c) shows that I is a nonmonotonic function of

ΓT. For small ΓT, I increases with decreasing ΓT; this is
expected based on the growing SNR as shown in Fig. 2(b).
For large ΓT, I → 0 as δN becomes increasingly inde-
pendent of ϵ. Interestingly, for intermediate ΓT, I peaks
around the peak in χ and close to TSS. This demonstrates
the correlation between the square-root singularity, I , and
the precision. To the best of our knowledge, this is the first
demonstration of an information-content enhancement by a
square-root singularity, linear or nonlinear. However, the
enhancement is only local since much faster scans away
from the singularity yield even larger I. Finally, we note
that while the exact value of I depends on the properties of
pϵðεÞ, the existence of a peak around TSS (our main result)
is independent of those properties as long as ϵ ≪ Γ which
generally holds in experiments.
Next we assess the effects of averaging. Here, again, our

sensor departs from convention. Figures 3(a)–3(c) show
typical trajectories of the intensity N obtained by averaging
n cycles resulting from an identical protocol FðtÞ and
different noise realizations. The circles in Figs. 3(a)–3(c)
indicate the crossing points, whose difference defines δN.

Figures 3(a)–3(c) show that, as n increases, the hysteresis
widens, δN increases, and trajectories smoothen. Figure 3(d)
shows δN versus Δ=Γ for the same three n. Notice the
stochastic δN (open data points) approaching the determin-
istic δN (black solid curve) as n increases. For n ¼ 500, the
stochastic δN is approximately a square-root function ofΔ=Γ
for smallΔ=Γ. This demonstrates the enhanced sensitivity at
the square-root singularity in the presence of noise, albeit
only after substantial averaging. Such a time-consuming
averaging is of course detrimental for fast sensing. The
situation appears to be familiar from conventional linear
sensing, where averaging mitigates the effects of noise.
However, we show next that the precision of our sensor
depends nontrivially on the averaging time.
Figure 3(e) shows χ versus n for two distinct Δ=Γ. For

each Δ=Γ, we simulated the dynamics of a perturbed
(ϵ ¼ Γ=100) and an unperturbed cavity. Notice how Δ=Γ
affects the dependence of χ on the averaging time. For
Δ ¼ 0.58Γ, χ increases with the square root of time, as
usual in linear sensors. In contrast, for Δ ¼ 0.87Γ (close to
Δc) χ increases abruptly for n≲ 50, decreases for
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FIG. 3. (a)–(c) N versus F=
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when scanning F=
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ΓT ¼ 104. n is the number of cycles that are averaged. Black
(gray) curves are forward (backward) trajectories. Purple circles
indicate the crossing points N�. (d) Splitting δN ¼ Nþ − N−,
used as a signal for sensing, averaged over n cycles. For reference
we show δN when D ¼ 0 as a solid black curve. (e) Precision χ
versus number of cycles for two different detunings. Solid gray
line is a square-root fit, with dashed lines indicating 95%
confidence bounds. Parameter values are as in Fig. 2 for
ΓT ¼ 104. Each curve is an ensemble average of (d) 12 and
(e) 120 different noise realizations.
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50≲ n≲ 100, and then slowly increases for n ≳ 100.
Remarkably, averaging 30 cycles leads to greater precision
than averaging 500 cycles. This anomalous behavior is due
to the nontrivial dependence of dδN=dΔ on n (see the
Supplemental Material [60]) near the static square-root
singularity. Thus, averaging plays a fundamentally different
role in our sensor. Typically, more measurements increase
the precision with which an observable is estimated. In
contrast, here the precision in ϵ can be increased by
restricting the number of measurements.
In summary, we introduced a nonlinear optical sensor

where a square-root singularity enhances the sensitivity,
precision, and information content of the signal, and the
signal-to-noise ratio increases with the measurement speed.
Crucially for applications, our sensing strategy involves
simple monochromatic intensity measurements and no
error-prone spectral fittings as in EP sensors. Since our
sensor involves a single resonator, the cumbersome and
slow task of tuning gain or loss is avoided. Instead, the
singularity can be accessed dynamically using a commer-
cially available amplitude modulator to modulate the laser
power at the desired speed. All these advantages open up
new opportunities for ultrafast and highly sensitive mea-
surements in noisy environments. Our approach is limited
to sufficiently nonlinear resonators displaying hysteresis.
While optical hysteresis has been observed in many Kerr-
nonlinear resonators [41,43,44,67], some of those systems
operate at cryogenic temperatures where sensing applica-
tions are limited. An alternative approach could involve
thermo-optical nonlinear resonators [46,49,52,68–73], eas-
ier to realize at room temperature but limited in speed by
thermal dynamics. It remains to be seen whether those
sensors can outperform linear sensors. Finally, our
approach can be extended to other hysteretic systems, like
acoustic [74] or mechanical [75,76] resonators, micro-
electromechanical systems [77,78], microwave circuits
[79], or cavity magnon polaritons [80].
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