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Chapter 1

Introduction

1.1 Motivation

The manipulation of light, and electromagnetic waves in general, is key to many infor-
mation and communication technologies. However, the absence of mutual interactions
between photons in linear systems [1] limits the type of operations one can perform
with light. For instance, in the absence of photon-photon interactions one cannot steer
or route light using light. To overcome this and related issues, and broaden the class
of operations that can be achieved with light, nonlinear optical media are required [1–
7]. Such media can mediate effective photon-photon interactions and thereby enable
light-by-light control. Nonetheless, realizing nonlinear effects is challenging because
nonlinear light-matter interactions are weak in most materials [8–12].

One way to enhance light-matter interactions is to confine light within an optical
microcavity [13–18]. The enhanced spatial overlap between light and the intra-cavity
matter, combined with a longer interaction time due to the storage of light in the
cavity, can reduce the power threshold for observing nonlinear optical effects. The
particular nonlinear effect we are concerned with in this thesis is an intensity-dependent
refractive index. This effect is sometimes called the “Kerr effect”, or “Kerr nonlin-
earity” [2]. However, we note that in the literature, the term “Kerr nonlinearity” is
sometimes reserved for situations where the nonlinear response is of electronic origin
and is effectively instantaneous. This contrasts with, for example, situations where an
intensity-dependent refractive index emerges from a slow (e.g., thermal) process. With
this distinction in mind and for simplicity, in the rest of this introduction chapter we
will refer to all nonlinearities associated with an intensity-dependent refractive index
as a “Kerr-type nonlinearity” regardless of their physical origins.

Optical cavities with Kerr-type nonlinearities have become a subject of great
interest in both experimental and theoretical physics since the 1970s [19, 20]. Kerr-type
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CHAPTER 1. INTRODUCTION

nonlinearities have been studied in planar cavities [21–26], single-mode cavities [27–
37], cavity arrays [38–42], and fiber cavities [43, 44]. The simplest of these systems is
the single-mode Kerr nonlinear cavity. We will therefore focus on this system in this
introduction chapter.

Within a classical framework, the main and most-widely studied feature of single-
mode cavities with Kerr-type nonlinearity is optical bistability: two stable steady states
at a single driving condition [45]. Bistable optical cavities have been proposed to realize
all-optical switching [46–51], flip-flop memories [52–54], and as building blocks for
logic gates [55–59]. However, it has been challenging to make (and even more so to
cascade) such devices in an energy-efficient, compact, and reliable manner [60]. Within
a quantum framework, single-mode Kerr nonlinear cavities (with a strong focus on
electronic Kerr-type nonlinearities) have also drawn great interest [29, 35–37, 61, 62].
If the Kerr nonlinearity is strong at the single-photon level, such a cavity can transform
coherent light (i.e., a laser) into a single-photon source via the photon blockade effect [1,
36, 37, 63].

Beyond their fundamental physics relevance, single-mode Kerr nonlinear cavities
are also relevant because they are the building blocks of cavity arrays. Such nonlinear
cavity arrays have recently drawn attention as platforms for quantum simulation or
emulation [1, 64, 65], i.e., simulating or emulating the behavior of complex quantum
systems using a more controllable system in the lab. For instance, nonlinear cavity
arrays have been proposed/fabricated to simulate the physics of the Bose-Hubbard
model [66–69] and various spin models [70–73]. Furthermore, applications of cavity
arrays with Kerr-type nonlinearity have also been proposed. For instance, such an array
can be used to solve hard optimization problems [42]. This approach relies on the
mapping of an array of bistable optical cavities to an Ising model [41], which in turn
can be mapped to a wide range of optimization problems [74]. Alternatively, nonlinear
cavity arrays can also be used for all-optical neuromorphic computing [75].

In view of the above exciting ideas and developments, this thesis aims to further
develop and deepen our understanding of optical cavities, or resonators in general,
containing materials with Kerr-type nonlinearities. The most commonly used optical
systems in this context are monolithic semiconductor cavities [22–25, 27, 38, 39, 76–
79]. Despite the tremendous success of such cavities, and the fact that they can be more
amenable for some technological applications by virtue of being ‘on-chip’, they have
their drawbacks. The most obvious drawback is that they generally lack (or have a very
limited) spectral tunability. The more subtle and important drawback, especially in these
times when new materials are constantly being discovered, is that it is often difficult
(if not impossible) to integrate new materials in the monolithic cavity. For monolithic
semiconductor samples, lattice matching constraints and fabrication procedures prevent
integration of the vast majority of materials once the mirror materials have been defined.
This is a major obstacle in the road towards realizing optical cavities with stronger, or
new types of, nonlinearities. Therefore, in this thesis we choose to mostly work with
open-access tunable cavities which can incorporate any material inside [36, 37, 80–91].
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1.1. MOTIVATION

𝐹𝐹𝑒𝑒−𝑖𝑖𝜔𝜔𝐿𝐿𝑡𝑡

𝑈𝑈
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Δ = 𝜔𝜔𝐿𝐿-ω0

𝛾𝛾

α

Figure 1.1: Schematic of an open-access tunable cavity. The cavity is made
of one concave and one planar distributed Bragg reflector (DBR). The Kerr
nonlinearity is provided by the material (red layer) attached to the planar
mirror. Each mirror is mounted on a piezoelectric actuator for alignment and
controlling the cavity length. Typically, we probe nonlinear effects in this
system via resonant excitation with a continuous-wave laser (red beam). All
shown symbols correspond to the model discussed in Section 1.2.

Figure 1.1 shows a schematic of the typical experimental setup used in this thesis:
a Fabry–Pérot cavity made of one concave and one planar distributed Bragg reflector
(DBR). The concave mirrors used in this thesis have been fabricated in the group of
Jason Smith at the University of Oxford, using focused-ion beam milling as described
in Ref. [92]. Meanwhile, the DBR coatings were all outsourced to an external company
(LAYERTEC GmbH). In this system, the nonlinear response is due to a thin material
layer attached to the planar DBR. The two mirrors are mounted on piezoelectric
actuators, allowing to scan the cavity length at wish. Thanks to the high mirror
reflectivity and the curvature of the concave mirror, optical modes are confined in
three dimensions. Moreover, their frequency separation can be much larger than the
linewidths, thereby allowing us to probe a single optical mode across a relatively
large range of cavity lengths. In the next section, we introduce the model for such a
single-mode cavity with Kerr-type nonlinearity. In the section after, we describe the
approaches used in this thesis to obtain Kerr-type nonlinearity. Finally, we give an
outline for this thesis.
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CHAPTER 1. INTRODUCTION

1.2 Optical bistability of a single-mode nonlinear cavity

Within a classical framework, the light field α in a single-mode cavity with Kerr-type
nonlinearity, driven by a coherent field with frequency ωL and amplitude F , satisfies
the following equation:

iα̇ =

(
−∆− i

Γ

2
+U |α|2

)
α + i

√
κ1F. (1.1)

Equation (1.1) is written in a frame rotating at the driving frequency ωL. Therefore, the
relevant frequency is given by the laser-cavity detuning ∆ = ωL −ω0. Γ = γ +κ1 +κ2
is the total loss rate, with κ1,2 the leakage rates through the mirrors and γ the intrinsic
loss rate due to absorption of the intra-cavity medium. U is the Kerr nonlinearity
strength, or the single-photon interaction constant. All model parameters are displayed
in Fig. 1.1, so that their meaning can be easily recognized.

Equation (1.1) can be derived or understood in various ways, depending on the
starting viewpoint. Starting from a quantum mechanical Hamiltonian in terms of boson
operators and the equation of motion for the density matrix, Eq. (1.1) is derived by
applying the mean-field approximation and neglecting quantum correlations [93, 94].
The mean-field approximation is valid when the single-photon nonlinearity is weak,
i.e., U ≪ Γ; this is the limit relevant to all results in this thesis. Alternatively, the
linear part of Eq. (1.1), obtained by setting U = 0, can be derived starting from a
classical description of a LC circuit. This is the simplest model for a resonator in
electrical engineering. In that case, the field α in Eq. (1.1) represents the superposition
of the voltage and current in the circuit [95]. Yet another perspective on Eq. (1.1) is
obtained by realizing that it is essentially a zero-dimensional version of Gross-Pitaevskii
equation, or nonlinear Schrodinger equation, widely used in atomic physics [96, 97].
By zero dimensional we mean that the spatial dependence for α is neglected, and
the kinetic and potential energy terms are replaced by a single energy value. Note,
however, that in contrast to the Gross-Pitaevskii equation describing conservative
systems, our equation includes coherent driving and dissipation to account for the input
laser and photon loss from the cavity. Finally, to give yet another perspective, we
note that Eq. (1.1) somewhat resembles the equation of motion for a Duffing oscillator
pioneered in the context of mechanical systems [98]. However, please note that while
the cubic nonlinearity is of the same form in the two equations, there are important
differences. The Duffing equation describes a real-valued variable and is of second
order in time [99, 100]. In contrast, Eq. (1.1) describes a complex-valued variable
(necessary to describe the light field’s amplitude and phase) and is of first order in time.
While the spectral response of these two systems is practically identical in the linear
regime, in the nonlinear regime there are very important differences as highlighted in a
recent work by Peters and Rodriguez [33].
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1.2. OPTICAL BISTABILITY OF A SINGLE-MODE NONLINEAR CAVITY

2-2 0
Δ/Γ

2-2 0
Δ/ΓΔ/Γ

2-2 0

U𝑁𝑁
/Γ

0

1

2 (a) (b) (c)

×50

F = 1.5 FcF = 0.8 FcF = 0.1 Fc

×2

Figure 1.2: Steady state solutions for a single-mode cavity with Kerr nonlin-
earity at three different driving amplitudes (a) F = 0.1Fc, (b) F = 0.8Fc, and
(c) F = 1.5Fc, with Fc the critical driving amplitude for the onset of optical
bistability. For clarity, multiplying factors of 50 and 2 are used for data in (a)
and (b), respectively. The red-shaded area in (c) indicates the bistable region.
For the calculation, we set κ1 = κ2 = 0.2Γ and U = 0.1Γ.

1.2.1 Steady-state analysis
In this subsection we calculate the steady states of our Kerr nonlinear cavity. This is
done by setting α̇ = 0. Multiplying the right-hand side of Eq. (1.1) with its complex
conjugate and reorganizing the remaining terms, we end up with an algebraic equation
for the photon number N = |α|2 to the third order:

κ1|F |2 =U2N3 −2∆UN2 +

(
∆

2 +
Γ2

4

)
N. (1.2)

To calculate the steady states, we can calculate the roots of the above polynomial which
is cubic in N. Therefore, mathematically we expect three steady state solutions always.
However, physics imposes that N must be real and non-negative, which excludes some
solutions of Eq. (1.2) for certain parameter regimes.

Let us first calculate N as a function of ∆ for constant F . The result is shown
in Fig. 1.2. The vertical axis shows UN/Γ, since this quantity determines whether
the system is in the linear or nonlinear regime. All the parameters used for the
calculation are given in the caption of Fig. 1.2 in dimensionless form. Most quantities
are referenced to Γ since all the physics scales with Γ. The driving amplitudes are
referenced to a critical value Fc = 3−3/4[Γ3/(κ1U)]1/2 for bistability [42]. Notice that
U enters the expression for Fc. Consequently, the choice of U/Γ does not affect the
plotted results in Fig. 1.2.

Figure 1.2 shows that, when F ≪ Fc, the response is like for a linear Lorentzian
oscillator. In this linear regime, UN ≪ Γ. For F = 0.8Fc, where UN/Γ ∼ 0.5 maxi-
mally, the nonlinear interaction leads to a noticeable tilting of the resonance profile
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𝜅𝜅1 F 2/Γ

(b)∆ = 0.9 ∆𝑐𝑐

60 2 4
𝜅𝜅1 F 2/Γ

0

0.5

1.5
(a)∆ = 0.1 ∆𝑐𝑐

60 2 4

U𝑁𝑁
/Γ 1

𝜅𝜅1 F 2/Γ

(c)

60 2 4

∆ = 1.5 ∆𝑐𝑐

Figure 1.3: Steady state solutions for a single-mode cavity with Kerr non-
linearity at three different detunings: (a) ∆ = 0.1∆c, (b) ∆ = 0.9∆c, and (c)
∆ = 1.5∆c, with ∆c the critical detuning for the onset of optical bistability
∆c =

√
3Γ/2. The red-shaded area in (c) indicates the bistable region. All other

model parameters are the same as in Fig. 1.2.

towards positive ∆ [99]. The direction of the tilting is determined by the sign of U ,
here chosen to be positive to model repulsive photon-photon interactions. For this
driving amplitude, the system has just entered the nonlinear regime. For F = 1.5Fc, the
nonlinearity dramatically modifies the resonance profile. This results in a region of ∆

where three steady-state solutions can be obtained [red shaded region in Fig. 1.2(c)]
at a single driving frequency. Through a linear stability analysis [101], one finds that
at most two solutions are stable at a given ∆; this is the so-called optical bistability.
Note that optical bistability occurs when the nonlinear interaction energy is comparable
to the linewidth of the cavity, i.e., UN ∼ Γ. Experimentally, the nonlinear resonance
profile can be probed by dynamically modulating the detuning while measuring the
transmitted intensity (e.g., Fabry–Pérot cavity) or scattered light (e.g., photonic crystal),
which relate to the intra-cavity photon number N via input-output theory [61, 102,
103]. For the forward (backward) modulation branch, the system will stay in the up
(down) branch until the end of the bistable region when the system must switch down
(up) to the other state. As a result, a dynamic hysteresis area appears when plotting
signals for both modulation directions as a function of detuning. In this thesis, we will
demonstrate this manifestation of optical bistability in Chapters 2 and 5.

Next, we fix ∆ and calculate N as a function of driving power |F |2 in Fig. 1.3.
Figure 1.3(a) shows N as a function of driving power |F |2 for ∆ = 0.1∆c. In contrast
to a linear Lorentzian oscillator where N always increases linearly with |F |2 for any
given detuning, the dependence of N in Fig. 1.3(a) shows a slope change asymptotically
to a lower value. This deviation from the initial slope, which corresponds to the
linear response of the system at low driving powers, means that the transmittance
of the cavity decreases with increased driving power. Therefore, this phenomenon
is referred to as the optical limiting effect [101, 104]. For ∆ = 0.9∆c, the nonlinear

12



1.3. APPROACHES TO REALIZE OPTICAL NONLINEARITY AND BISTABILITY

interaction energy distorts the profile. This distorting trend continues when increasing
the driving power, until an S-like curve emerges [2, 95, 99] as shown for ∆ = 1.2∆c
in Fig. 1.3(c). This manifestation of optical bistability also has been observed in the
form of dynamic hysteresis in many experiments via modulating the driving power up
and down [19, 20, 29, 105, 106]. In Chapter 3 of this thesis, we will show this type of
optical bistability in a nonlinear grating system. As the model introduced here pertains
to a single-mode Kerr nonlinear cavity while our experiment involves a much more
complex multimode system (dispersive grating), the experimental results in Chapter 3
cannot be quantitatively reproduced by the current model. Nonetheless, the simple
model here still sheds light onto some features. Overall, Fig. 1.3 also shows that for a
single-mode Kerr nonlinear cavity there exists a minimum detuning (∆c =

√
3Γ/2) for

optical bistability to emerge.

1.3 Approaches to realize optical nonlinearity and bista-
bility

The effect of the nonlinear interaction is to shift the resonance frequency by the quantity
UN, with U the nonlinearity strength and N the intra-cavity photon number. This shift
is described by a linear refractive index change due to the intra-cavity intensity I:
n = n0 +n2I, with n0 the linear refractive index in absence of light, and n2 a nonlinear
refractive index constant. In nonlinear optics, the mechanism responsible for this
intensity-dependent refractive index is referred to as the Kerr effect, quantified by the
third-order nonlinear susceptibility χ(3) [2]. However, a similar intensity-dependence
for the material refractive index can also stem from various other mechanisms which
do not have an electronic origin.

The work presented in this thesis is based on two different approaches to realize
the intensity-dependent refractive index. The first approach is to harness the thermo-
optical effect as summarized in Fig. 1.4(a). In this context, the nonlinearity is due
to the temperature-dependent refractive index of the medium: n = n0 +

dn
dT δT , with

dn
dT a material constant, and δT the temperature variation of the medium due to light
absorption. Historically, interest in this type of nonlinearity is due to various reasons.
On one hand, thermo-optical nonlinearity has been studied as an undesired effect
concurrent with desired nonlinear effects [107–109]. On the other hand, this type of
nonlinearity has been employed to realize various applications such as wavelength
tunability for an optical cavity [110, 111], and all-optical switching [46, 112]. In
contrast to most previous works where the thermo-optical nonlinearity occurs in a solid-
state materials [46, 105–107, 113–116], in this thesis we use olive and cinnamon oils
as thermal nonlinear media. This is possible thanks to the type of system (open-access
cavity) we investigate, which allows to easily incorporate such inexpensive and easily-
accessible oils that have a strong nonlinear response. A schematic of a typical system
we use in shown in Fig. 1.4(a). The figure shows a Fabry–Pérot cavity filled with a drop
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1. Thermo-optical nonlinearity 

n(r,t) = n0 + (dn/dT) ΔT(r,t)

 “Easy” at room temp. x Slow (~μs)

= n0 + n2 (t-t’) I (r,t)

2. Strong exciton-photon coupling

| ⟩𝑝𝑝𝑝𝑝𝑝𝑝 = X| ⟩𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐶𝐶𝐿𝐿| ⟩𝑝𝑝𝑝𝑝𝑝𝑝𝑝

photon

photon

n(r,t) = n0 + n2 I (r,t)

n2 ∝ |X|4

 Fast (~fs)x Hard at room temp.

Figure 1.4: Two approaches for realizing Kerr-type nonlinearity in optical
cavities: (a) through thermo-optical nonlinearity; (b) through strong exciton-
photon coupling and the resultant polaritonic nonlinearity.

of such oil. Oils have been reported to possess a large temperature-dependent refractive
index through Z-scan [117–119] or thermal lensing measurements [120, 121] at room
temperature. Due to their fluid nature, they also have the advantage to be resistant
to strong heating that can potentially damage solid-state thermal nonlinear materials.
However, due to its thermal origin, the nonlinearity from oils is relatively slow (tens
of microseconds). Although a slow nonlinearity is not desired in many applications
that value fast operations, we will show in Chapters 2 and 3 that intriguing nonlinear
dynamical phenomena can emerge because of this slow nonlinearity.

Figure 1.4(b) displays the second approach we explore in this thesis to realize
an intensity-dependent refractive index. This approach involves strongly coupling
cavity photons to semiconductor excitons. The resultant exciton-polaritons mutually
interact via the underlying excitons [26, 29, 61, 88, 122–125]. The strength of these
polariton-polariton interactions, quantified by the constant U in Eq. (1.1), corresponds
to the magnitude of the nonlinear refractive index in the wave picture of light.

Typically, the polaritonic nonlinearity being of electronic origin is much faster
than the thermo-optical nonlinearity. Such a fast nonlinearity is desirable for appli-
cations where high speed is important. However, realizing strong polariton-polariton
interactions at room temperature and under continuous-wave driving is extremely chal-
lenging. In fact, to the best of our knowledge, optical bistability as usually probed with
a continuous-wave laser has never been realized in any solid-state room-temperature
polariton system. The reason is that the strength of the nonlinearity (exciton Bohr
radius) is inversely proportional to the exciton binding energy. Therefore, excitons
with large binding energies that are robust at room temperature generally have a weak
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1.4. OVERVIEW OF THIS THESIS

nonlinearity and viceversa. As a result, strong continuous-wave nonlinearities (as
needed to observe optical bistabiliy) have only been observed in cryogenically cooled
semiconductors hosting excitons with small binding energies [29, 126]. We note that
strong nonlinearities have been realized at room-temperature [127, 128], but only under
pulsed excitation since otherwise materials degrade.

In this thesis, we will present our efforts on employing the tunable cavity system
to explore CsPbBr3 perovskite, a newly emerged excitonic material, for achieving
optical bistability. Although only this particular material is considered in this thesis,
as mentioned in Section 1.1, the setup we built is a generic platform for investigating
more novel materials in the future.

1.4 Overview of this thesis

This thesis is organized as follows. Chapters 2 and 3 present experiments involving two
different resonant systems with thermo-optical nonlinearity due to an oil layer. In both
cases, the resonators are driven by a continuous-wave laser. In Chapter 2, we study
the dynamics of light in an oil-filled tunable microcavity. We scan the cavity length
across the resonance at different speeds, and find signatures of memory effects in the
nonlinear optical response due to the oil. In particular, we discover a universal scaling
law for the dynamic optical hysteresis of the cavity as a function of the driving speed.
We explain our results by modifying the standard Kerr nonlinear model [Eq. (1.1)] to
account for the thermal relaxation time of the nonlinearity. We also show, theoretically,
a new regime of non-Markovian dynamics emerging from the interplay of nonlinear
memory effects and white noise.

In Chapter 3, we present experiments on a one-dimensional metallic grating covered
by oil. We demonstrate optical bistability in the transmitted laser intensity, and a
series of novel dynamical effects in the diffracted intensities. In particular, we observe
spontaneous symmetry breaking in the intensities radiated by the +1 and −1 diffraction
orders. Finally, we also discover a dynamical regime wherein the grating transmission
spontaneously begins to oscillate, and the diffracted intensities display a series of spikes
reminiscent of the firing of neurons and other excitable systems.

In Chapters 4 and 5, we investigate optical microcavities with perovskite semi-
conductor crystals. Chapter 4 presents our first experiment in this direction, aimed at
realizing strong coupling between cavity photons and excitons in a CsPbBr3 perovskite
crystal at room temperature. We performed measurements with objectives of different
numerical apertures (NA), evidencing spectral features resembling Fano resonances
and Rabi splittings — signatures of strong light-matter coupling — but which are
neither. These features are artificially generated by the NA. Through transfer matrix
modelling, we show that these spectral artefacts are due to the incoherent sum of
intensities collected by the NA. We conclude the chapter by providing guidelines to
avoid pitfalls in the characterization of dispersive optical systems.

In Chapter 5, we describe the construction and characterization of a tunable optical

15



CHAPTER 1. INTRODUCTION

cavity in a novel closed-cycle cryostat. We characterize the mechanical stability of our
cavity in two situations: cryo-cooler OFF and ON. We find sub-atomic stability in the
former case, but a rather poor stability in the latter case. Nonetheless, by performing fast
measurements (compared to the characteristic time scale of mechanical fluctuations),
our tunable cavity can still be used to reveal nonlinear light-matter interactions. In this
way, we demonstrate optical bistability in a cavity with perovskite semiconductor for
the first time.
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Chapter 2

Universal scaling of the dynamic optical
hysteresis of a tunable cavity with

non-instantaneous nonlinearity

We investigate, experimentally and theoretically, the dynamics of a laser-
driven cavity with non-instantaneous effective photon-photon interactions.
Scanning the laser-cavity frequency detuning at different speeds across an
optical bistability, we find a hysteresis area that is a non-monotonic function
of the speed. In the limit of fast scans comparable to the memory time of
the interactions, we demonstrate that the hysteresis area decays following a
universal power law with scaling exponent −1. We further demonstrate a
regime of non-Markovian dynamics emerging from white noise. This regime
is evidenced by peaked distributions of residence times in the metastable
states of our system. Our results offer new perspectives for exploring the
physics of scaling, universality, and metastability, in non-Markovian regimes
using arrays of bistable optical cavities with low quality factors, driven by
low laser powers, and at room temperature.
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2.1 Introduction

Photons in a nonlinear cavity can undergo phase transitions akin to condensed matter
systems. Since the seminal works by Graham and Haken [129], Roy and Mandel [130],
and Scully [131], lasers have inspired numerous studies of phase transitions of light.
Recently, coherently driven cavities supporting mean-field bistability — two steady-
states at a single driving condition — have taken a central role in studies of photonic
phase transitions [29, 30, 35, 40, 41, 67, 68, 132–138]. Progress in this field has
been recently accelerated by three developments. First, various nonlinear photonic
resonators, and novel methods to probe their dynamics, are becoming available [29,
35, 134, 135, 137]. Second, fresh insights coupled to novel theoretical methods have
revealed intriguing non-equilibrium phases of nonlinear cavities [40, 41, 64, 67, 136,
139–141]. Third, there is increasing interest in performing optimization [42, 142, 143]
and computation [75] with bistable cavity arrays.

Descriptions of bistable cavities commonly assume instantaneous effective photon-
photon interactions [61]. In the mean-field equation of motion for the intracavity field α ,
this assumption manifests as a Kerr nonlinearity of the form |α|2α [93]. The same cubic
nonlinearity is found in the Gross-Pitaevskii equation employed in atomic physics [96,
97, 144], in the Ginsburg-Landau theory of superconductivity [145], in the Lugiato-
Lefever equation of nonlinear optics [146], and in the force derived from Goldstone’s
Mexican hat potential V =−|φ |2 + |φ |4 for the scalar field φ at the heart of the Higgs
mechanism [147]. In optics, strong Kerr nonlinearities arise in semiconductor cavities
where exciton-exciton interactions are effectively instantaneous [61]. A drawback
of those cavities is that optical bistability based on Kerr nonlinearities is typically
only observed at cryogenic temperatures. In contrast, several optical resonators with
slow but strong thermal nonlinearities have routinely displayed bistability at room
temperature [46, 105, 107, 148–151]. As bona fide bistable systems, thermo-optical
resonators may open up new perspectives for classical Hamiltonian simulation and
computation [42, 75, 142, 143, 152]. However, the influence of the thermal relaxation
time on the hysteretic and stochastic dynamics of bistable cavities remains to be
addressed.

In this chapter, we demonstrate signatures of scaling, universality, and memory, in
the dynamics of a laser-driven cavity with thermo-optical nonlinearity. This nonlinearity
is associated with non-instantaneous effective photon-photon interactions, and it results
in room-temperature optical bistability at low laser powers P ∼ 70 µW. Scanning the
laser-cavity detuning, we observe an optical hysteresis influenced by the ratio of the
scanning time to the memory time of the interactions. In contrast to previous reports of
dynamic hysteresis in resonators with effectively instantaneous interactions [28, 29,
153, 154], we find a hysteresis area that is a non-monotonic function of the scanning
speed. Moreover, we discover a universal scaling of the hysteresis area in the limit of
fast scans. Our results elucidate how the hysteretic behavior characterizing first-order
phase transitions, and the boundary between phases, dynamically vanish when the
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2.2. EXPERIMENTAL SETUP

nonlinearity has a finite memory time. Furthermore, we evidence a new regime of
non-Markovian dynamics characterized by peaked distributions of residence times in
metastable states. Interestingly, this new non-Markovian regime emerges under the
influence of white noise.

2.2 Experimental setup

Figure 2.1(a) illustrates our system: a tunable Fabry-Pérot cavity driven by a 532 nm
continuous-wave laser. The cavity is made by a concave and a planar mirror, each
comprising a distributed Bragg reflector (DBR) on a glass substrate. The mirrors have
a peak reflectance of 99.9% at 530 nm, which is the center of the stop-band. The
concave mirror, with a diameter of 7 µm and a radius of curvature of 12 µm, was
fabricated by milling a glass substrate with a focused-ion beam prior to the deposition
of the DBR [92]. An image of the sample containing concave mirrors of various sizes
is shown in Fig. 2.1(c). The dashed circle indicates the one used in our experiment.
Single-mode operation is ensured by the strong lateral confinement and high reflectivity
of the mirrors.

The cavity mirrors are aligned parallel to each other by controlling all three transla-
tional (rotational) degrees of freedom of the concave mirror with nanometer (micro-
degree) precision using a nanopositioner. The planar mirror is mounted on a linear
actuator used to scan the cavity length, and is kept still during the alignment process.
We monitor the cavity alignment by illuminating the cavity with a collimated 635 nm
light beam while imaging the resultant Fabry-Pérot fringes across the cavity plane [155].
The symmetry and the spacing of the fringes are used as a reference to guide the cavity
alignment. With this method, an uncertainty of ∼ 3 milli-degree is achieved.

To study the optical response of our cavity, we measured the transmitted intensity
of a laser while modulating the laser-cavity detuning. An optical setup was built as
sketched in Fig. 2.1(b). We used a single-mode 532 nm continuous-wave laser to drive
the cavity. Excitation and collection were achieved through 10× microscope objectives
with numerical aperture NA = 0.25. In all measurements, we drove the fundamental
transverse mode of the 9th measurable longitudinal mode of the cavity. Taking into
account the electric field penetration into the DBRs, the effective cavity length is
∼ 3 µm. To exclude multi-mode interference effects, we optimized the in-coupling
efficiency of the laser into the desired mode by finely adjusting the position of the
concave mirror relative to the laser beam. Finally, the transmitted laser signal was
measured by a photodetector.

The laser-cavity detuning was modulated by scanning the cavity length via the linear
actuator that supported the planar mirror. This actuator is in closed-loop configuration
that enables us to specify the modulation waveform, travel range and frequency through
software. In all measurements, we specified a symmetric triangular waveform with
a travel range of 350 nm, and only varied the frequency. For modulation frequencies
above ∼ 50 Hz, we suspected that the actual travel range of the actuator differed from
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Figure 2.1: (a) Schematic of a plano-concave cavity filled with oil, as in our
experiments. (b) Schematic of the experimental setup. MO is microscope
objective, PD is photodetector. (c) Microscope image of a sample containing
concave mirrors of different sizes. The encircled concave mirror, which has a
radius of curvature of 12 µm, is used in our experiments.

the specified one. Therefore, we used a Michelson interferometer in the input path of
the setup [see Fig. 2.1(b)] to characterize the mirror displacement. In particular, we
measured the time-dependent intensity of a small section of the interferogram while
the cavity length was being modulated. Next, we fitted the measured intensity with a
two-beam interference equation. Through this analysis, we obtained the actual ranges
travelled by our mirror at different frequencies, based on which we could calculate
the scanning speeds along the horizontal axis for Fig. 2.4. Once this calibration was
finished, the beam splitter for the Michelson interferometer was removed in order to
avoid unwanted reflections that could disturb the hysteresis measurements.

2.3 Optical bistability and steady-state analysis

To endow the cavity with a nonlinear optical response, we place olive oil inside the
cavity [117, 118, 156]. Through z-scan measurements we estimated the nonlinear
refractive index n2 of our oil to be ∼ −5× 10−8 cm2/W at 532 nm, consistent with
Ref. [118]. Figure 2.2 shows the laser transmitted intensity through our oil-filled cavity
averaged over 70 modulation cycles and at three laser powers. Green and black data
points correspond to opening and closing the cavity, respectively. For low powers
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Figure 2.2: Average hysteresis measured by scanning ∆/Γ [see Eq. (2.1)] at
constant speed for three driving powers P. Green (black) curves correspond
to opening (closing) the cavity. The overshoot enclosed by the dotted circle
emerges from non-instantaneous effective photon-photon interactions. For
clarity, we multiplied the measurements for P = 20 µW by 2 and vertically
displaced the other measurements. Red curves are calculations with Eq. (2.1)
as explained in the text.

P ≲ 20 µW, the cavity response is linear. The red curve over the measurements for
P = 20 µW is a Lorentzian fit, yielding a resonance linewidth of 0.104±0.001 nm. For
P = 70 µW, the transmission displays hysteresis (see arrows in Fig. 2.2) and bistability
around a mirror position of 0.1 nm. The power needed for bistability in our cavity
is similar to that in state-of-the-art monolithic semiconductor cavities [29, 35, 157],
but at conveniently lower quality factors (by a factor of ∼ 10) and operating at room-
temperature instead of ∼ 5 K. For P = 150 µW, the bistability and hysteresis range
enlarge as expected. In Appendix 2.8.1, we estimate the laser-induced temperature rise
in our cavity based on the temperature-dependent refractive index of olive oil [158].

All measurements in Fig. 2.2 correspond to linear ramps of the cavity length at
1.75 µm/s. Already for this slow scan, an overshoot followed by a slow decay of
the transmitted intensity arises when closing the cavity in the nonlinear regime. This
overshoot is due to the finite thermal relaxation time of the oil-filled cavity, which
is absent in the standard Kerr nonlinearity [107]. The standard Kerr model for the
intra-cavity mean-field α in a frame rotating at the driving frequency ω is

iα̇ =

(
−∆− i

Γ

2
+U |α|2

)
α + i

√
κ1F. (2.1)

Here ∆ = ω −ω0 is the laser-cavity detuning, with ω0 the resonance frequency of the
cavity. U is the effective photon-photon interaction strength mediated by the nonlinear
medium [61]. F is the driving amplitude. The total loss rate Γ = κ1 +κ2 + γ is the sum
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of the input-output leakage rates through the two mirrors, κ1,2, and the intrinsic cavity
loss rate γ due to absorption. The steady-states follow from setting α̇ = 0 in Eq. (2.1).

We attempted to fit the steady-state photon density |α|2 calculated with Eq. (2.1) to
the measurements for P = 150 µW in Fig. 2.2, with F as the only relevant adjustable
parameter. Γ is fixed by the measured linewidth in the linear regime. Furthermore,
since Eq. (2.1) is a mean-field model, the absolute values of |α|2 and U are irrelevant;
the spectral lineshape is determined by the ratio U |α|2/Γ. Various lineshapes can be
obtained by varying F for fixed U and Γ. Thus, we adjusted F until obtaining the
red curve plotted over the measurements for P = 150 µW. Solid and dashed curves
represent stable and unstable states, respectively. Stability was analyzed as in Refs. [32,
93]. The fit is good far from resonance, but deviates from the data near the bistability.
This deviation increases with the scanning speed, as shown next.

2.4 Dynamic hysteresis with non-instantaneous nonlin-
earity

We performed hysteresis measurements for P = 150 µW and various scanning speeds.
A laser power far above the bistability threshold limits the influence of noise on
our measurements. Figure 2.3(a) shows average hysteresis measurements for three
speeds. Top to bottom, the speeds are ν , 7ν , and 49ν , with ν = 0.74 µm/s. The
transmitted intensity is shown versus ∆/Γ, determined by the mirror position and
resonance linewidth in Fig. 2.2. Figure 2.3(a) shows how the hysteresis cycle changes
with the scanning speed. Increasing the speed from ν to 7ν makes the overshoot
broader and the hysteresis wider. Interestingly, further increasing the speed to 49ν

makes the overshoot broader but the hysteresis narrower. At 49ν the lineshape for
both scanning directions resembles a Lorentzian, which suggests approximately linear
response for fast scans regardless of the power.

The behavior in Fig. 2.3(a) can be explained by considering the finite heating and
cooling time of our oil-filled cavity; this makes effective photon-photon interactions
non-instantaneous. Therefore, we modify Eq. (2.1) by letting

U |α(t)|2 →
∫ t

0
ds K(t − s)|α(s)|2 ≡ w(t), (2.2)

with the kernel function defined as K(t) = U
τ

e−t/τ . The memory time of the interactions,
τ , corresponds to the thermal relaxation time of our cavity. Here we have followed the
prescription of Mori [159] and Hänggi [160] for dealing with finite-time interactions.
However, whereas Mori-type equations involve non-instantaneous dissipation, we
introduced non-instantaneous nonlinearity.

Making the substitution Eq. (2.2) in Eq. (2.1) yields an integro-differential equation,
which can be conveniently (for numerical simulation) written as two coupled differential
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Figure 2.3: (a) Measurements and (b) calculations of average hysteresis when
∆/Γ is scanned at three different speeds and constant power. The slowest
scanning speed is ν = 0.74 µm/s in (a), and f = 5.97× 10−6 Γ2 in (b). The
power is P= 150 µW in (a) and F = 1.52Fc in (b), with Fc the critical amplitude
needed for bistability (see Appendix 2.8.1); the power in (a) also corresponds
to F = 1.52Fc. Measurements are averaged over 70 realizations. Dashed lines
indicate the range of ∆/Γ corresponding to the thermal relaxation time τ .

equations:

iα̇(t) =
(
−∆− i

Γ

2
+w(t)

)
α(t)+ i

√
κ1F, (2.3a)

ẇ(t) =
[
U |α(t)|2 −w(t)

]
/τ. (2.3b)

Equation. (2.2) and Eq. (2.3) imply that the state of the system depends on its entire
past, weighted by the memory kernel K(t). Thus, interactions are non-local in time.
Note that when α(t) is constant and can be taken out of the integral in Eq. (2.2), we
recover Eq. (2.1). Hence, steady states are unchanged by K(t).

Figure 2.3(b) shows dynamic hysteresis calculations using Eqs. (2.3), with the
same parameter values used for the steady-state calculations in Fig. 2.2. As for the
experiments, we show scanning speeds a factor of 7 apart. The model reproduces
all features observed in experiments. In the calculations, we set the memory time
to τ = 104 Γ−1 and the slowest scanning speed to f = 5.97× 10−6 Γ2. Relative to
the experiments, the value of τ is smaller (details ahead) and the speed is larger. We
rescaled timescales to avoid unnecessarily long and memory-expensive calculations.
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Figure 2.4: (a) Measured and (b) calculated hysteresis area versus scanning
speed, in the same dynamic range. Measurements are averaged over 70 realiza-
tions. Gray data points indicate the speeds presented in Fig. 2.3. Gray lines are
power laws with exponent −1.

Our mean-field calculations can be directly compared to experiments, because we
respect the hierarchy of timescales in experiments: Γ−1 ≪ τ ≲ Tb, with Tb the scanning
time across the bistability. Moreover,the ratio Tb/τ is similar for experiments and
calculations.

Now we can estimate the experimental thermal relaxation time by comparing
hysteresis cycles in Fig. 2.3. Since in theory we set τ and the scanning speed for ∆/Γ,
we can convert τ to a range of ∆/Γ and viceversa. In Fig. 2.3(b) we indicate the ∆/Γ

range corresponding to τ by dashed lines. As expected, the ∆/Γ range corresponding to
τ increases with the speed. For the lowest speed f , Tb ≫ τ and the overshoot observed
when ∆ decreases is the main feature unanticipated by the standard Kerr model. For 7 f ,
Tb ∼ τ and the overshoot is almost as wide as the bistability. For 49 f , Tb < τ and we
have a close-to-linear response. Experiments in Fig. 2.3(a) display similar behavior as
calculations in Fig. 2.3(b). Hence, in the same fashion we also indicate the ∆/Γ range
corresponding to τ by dashed lines in Fig. 2.3(a). Based on this range of ∆/Γ and our
knowledge of the experimental scanning speed, all three measurements in Fig. 2.3(a)
are consistent with a relaxation time τ = 16±1 µs.

In Fig. 2.4(a) we plot the experimental average hysteresis area A =
∫ T

0 |I∆↑− I∆↓|dt,
with I∆↑ and I∆↓ the transmitted intensity when ∆ increases and decreases, respectively.
T is the driving period, which exceeds Tb. Figure 2.4(b) shows the corresponding
calculations based on Eqs. (2.3). In both measurements and calculations, A peaks
at a scanning speed corresponding to the cross-over between two regimes. For slow
scans, A increases with the speed because the cavity cannot adiabatically follow ∆(t).
This regime of dynamic hysteresis and the corresponding scaling laws for A have been
previously explored [28, 29, 153, 161]. The second and new regime we investigate
comprises speeds above the value for which A peaks. Therein, A decays with increasing
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Figure 2.5: Calculated hysteresis area versus the inverse of scanning period.
Each symbol corresponds to a different driving amplitude F relative to the
critical amplitude needed for bistability Fc. Gray lines are power law with
exponent −1. Inset: Intracavity photon number |α|2 versus ∆/Γ for the period
indicated by the filled circle in the main panel.

speed, because the nonlinearity does not have time to build up during the scan. At high
speeds, the dynamics of the system transition from nonlinear to linear. The number of
attractors changes from two to one.

Our measurements are limited to scanning speeds between ∼ 0.5 µm/s and ∼
40 µm/s. The upper speed limit is determined by the resonance frequency of our
piezoelectric actuator. On the other end, we limited our measurements to speeds
above 0.5 µm/s to avoid low-frequency mechanical noise in our setup. Despite these
limitations, the good agreement between experiments and calculations encourages us
to use our model to interpret the physics over an extended speed range.

2.5 Universal scaling of the dynamic hysteresis area

In Fig. 2.5 we calculate A versus the scanning speed for different F . At low speeds, the
driving conditions determine the scaling of A [29]. At high speeds, A decays following
a power law with scaling exponent −1 (gray lines). Interestingly, this scaling behavior
is universal; i.e., the slope of the gray lines fitted to the data in Fig. 2.5 is independent
of the system parameters. To assess whether our experiments display such scaling
behavior, in Fig. 2.4(a) we plot a power law with exponent −1 over our high-speed
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Figure 2.6: Residence time distributions in the lower metastable state for
different τ . Dashed lines are exponential fits. The peaked distribution in (b) is
indicative of non-Markovian dynamics.

data points. The fit suggests that we reached the onset of the −1 power law regime.
For comparison, we plot a −1 power law on top of the corresponding calculations in
Fig. 2.4(b). In this case, the power law was fitted to the calculations in Fig. 2.5 over an
extended range. As in experiments, we observe the onset of the −1 power law within
the restricted speed range in Fig. 2.4(b).

Recent calculations [28] and experiments [29] on hysteretic cavities with instan-
taneous interactions observed a universal scaling of A at low speeds due to quantum
fluctuations. Coincidentally, the scaling exponent found in Refs. [28, 29] is also −1,
as in the present work. However, the scaling behavior here reported has an entirely
different origin (i.e., due to non-instantaneous interactions and unrelated to fluctuations)
and arises in the opposite regime of fast scans.

2.6 Memory effects due to the thermo-optical nonlin-
earity

Next, we demonstrate a new regime of non-Markovian dynamics emerging from the
interplay of non-instantaneous effective photon-photon interactions and white noise
in the laser amplitude and phase. For fixed F and ∆/Γ within the bistability, |α|2
randomly switches between metastable states as shown in Appendix 2.8.3. Based on
many long trajectories |α(t)|2, we calculate residence time distributions (RTDs) in the
metastable states. For example, Fig. 2.6 show RTDs in the lower metastable state for
two different τ . For τ ≪ Γ−1, the dynamics is Markovian and RTDs decay exponen-
tially as in Fig. 2.6(a). For τ > Γ−1, RTDs become increasingly peaked with increasing
τ . The deviation from exponential decay [see the poorly fitting line in Fig. 2.6(b), for
Γτ < 500] evidences non-Markovian dynamics [162]. Non-Markovian dynamics are
usually associated with non-instantaneous system-environment interactions (dissipa-
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tion), and with colored noise in the driving force according to the fluctuation-dissipation
relation [159, 160, 163–166]. In contrast, we demonstrate non-Markovian dynamics
emerging from non-instantaneous effective photon-photon interactions, which suppress
fast switchings between metastable states regardless of the noise spectrum. Experimen-
tally, our system also experiences colored noise in ∆ due to mechanical fluctuations of
our mirrors with high-frequency cutoff. In Appendix 2.8.4, we show how this noise
influences single-shot dynamic hysteresis measurements.

2.7 Conclusion

In summary, we have demonstrated signatures of scaling, universality, and non-
Markovianity, in the dynamics of a laser-driven cavity with thermo-optical nonlinearity.
Because of non-instantaneous effective photon-photon interactions, the optical hys-
teresis area is maximized at a finite scanning speed. At high speeds, we discovered
a universal scaling behavior through which the hysteresis characterizing first-order
phase transitions vanishes. Our findings suggest that oil-filled cavities are promising
for exploring critical phenomena and new universality classes in systems with mem-
ory [167, 168]. For slow or fixed driving conditions, our system exhibits peaked RTDs
and non-Markovian dynamic hysteresis. This suggests that our system could be used
to test theorems of non-equilibrium fluctuations [169], entropy production [170], and
speed limits [171] in non-Markovian regimes. Beyond single-cavity physics, our ob-
servation of optical bistability in oil-filled cavities paves the way for realizing bistable
coupled cavities [172] and cavity arrays at room-temperature. Such arrays could be
used to probe Ising-type phase transitions [41] or to solve combinatorial optimization
problems [42, 142, 143].
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2.8 Appendices

2.8.1 Temperature rise in the oil-filled cavity

Here we estimate the temperature rise of our oil-filled cavity in the nonlinear regime.
To this end, let us first consider the mean-field equation of motion for the coherent
field α in a driven-dissipative Kerr nonlinear cavity, i.e., Eq. (2.1). Calculating the
steady-state solutions to Eq. (2.1), one finds that the number of photons in the cavity
N = |α|2 satisfies:

N =
κ1|F |2

∆̃2 +(Γ/2)2
. (2.4)

As described before, Γ is the total loss rate, U is the effective photon-photon
interaction strength, κ1 is the input-output leakage rate, and F is the driving amplitude.
In addition, we have defined the quantity

∆̃ = ∆−UN, (2.5)

with ∆ = ωL −ω0 the laser-cavity detuning, and UN the total interaction energy associ-
ated with a population of N photons.

In Eq. (2.4), N appears as a Lorentzian function of the effective detuning ∆̃. How-
ever, since N also enters into the right hand side of Eq. (2.4) via ∆̃, N is a multi-valued
function of the driving parameters F and ∆ . Indeed, Eq. (2.4) corresponds to a third
order polynomial in N. This means that, in general, three steady-state solutions exist
for a single driving condition. Of these three solutions, at most two are stable; this
is known as bistability. The critical driving amplitude for observing bistability is
Fc = 3−3/4

√
Γ3/(κ1U) [42].

Next, we analyze the resonant response of our oil-filled cavity. The cavity resonance
frequency is

ω0 =
qcπ

nL
, (2.6)

with c the speed of light, q the longitudinal mode number, n the linear refractive index
of the oil at ambient temperature, and L the cavity length. When the cavity length is
scanned under laser illumination, the resonance frequency changes to

ω̃0 = πqc
1

(n+δn)
1

(L+δL)
, (2.7)

with δn the refractive index change due to laser-induced heating of the oil, and δL
the change in cavity length due to the scan. Next, we give an approximate expression
for Eq. (2.7) based on two observations: (i) As Fig. 2.2 shows, the hysteresis range
spans less than 0.2 nm in mirror displacement even for the highest laser power used
in our experiment. Meanwhile, the initial cavity length is ∼ 3 µm. Hence, δL ≪ L.
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(ii) δn is on the order of 10−4 [158]. Thus, we have δn ≪ n. Based on the above two
inequalities,

ω̃0 ≈
πqc
nL

(
1− δn

n
− δL

L

)
. (2.8)

Next, we insert Eq. (2.8) into Eq. (2.5). For convenience and without losing
generality, we set the center of the modulated cavity length (Lc) to match the laser
driving frequency ωL, i.e., qc/(2nLc) = ωL. Consequently, we obtain

∆̃ = ωL
δL
Lc

+ωL
δn
n
. (2.9)

The first term on the right hand side of Eq. (2.9) corresponds to the detuning ∆ in
Eq. (2.5). The second term corresponds to the interaction energy, which is proportional
to the intensity-induced refractive index change δn.

For our oil-filled cavity with thermo-optical nonlinearity, δn is given by

δn =
dn
dT

δT, (2.10)

with dn/dT a material constant and δT = T −T0 the temperature change of the oil due
to the light intensity stored inside the cavity.

Next, we estimate δT based on energy conservation arguments, similar to Ref. [107].
δT is related to the heat that goes inside and outside the cavity, i.e., qin and qout , via

C ˙δT = q̇in − q̇out , (2.11)

with C the heat capacity of the oil. Next, we assume that q̇in = RN, with N the number
of photons in the cavity and R a constant describing the conversion of absorbed photons
into heat. Furthermore, we assume that q̇out = SδT , with S a constant describing heat
dissipation into the environment. Hence, Eq. (2.11) becomes

C ˙δT = RN −SδT. (2.12)

Therefore in steady state ( ˙δT = 0), the temperature rise δT is proportional to the
photon number N:

δT =
R
S

N. (2.13)

Combining Eq. (2.9), Eq. (2.10), and Eq. (2.13), we find expressions for the effective
detuning ∆̃, the linear detuning ∆, and the thermo-optically induced interaction constant
UT :

∆̃ = ∆−UT N, (2.14a)

∆ = ωL
δL
Lc

, (2.14b)
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UT =−ωL
1
n

dn
dT

R
S
. (2.14c)

Based on the above analysis, we can estimate the temperature rise in the measure-
ment of P = 150 µW shown in Fig. 2.2. Eq. (2.13) states that the highest temperature in
the measurement corresponds to the largest N. From Eq. 2.4 the largest N corresponds
to ∆̃ = 0. Using Eq. (2.9) and Eq. (2.10), we obtain

∆̃ = ωL
δL
Lc

+ωL
1
n

dn
dT

δT = 0. (2.15)

We solve the above expression for δT , and insert the parameter values corresponding to
our experiment with a driving power of 150 µW. In Fig. 2.2 we observe δL = 0.177 nm.
The cavity length is L ∼ 3 µm, and the linear refractive index of our oil at λ = 532 nm
is n ≈ 1.45. In addition, based on Ref. [158] we estimate dn/dT ∼−4×10−4 °C−1.
Inserting these numbers in Eq. (2.15), we find the greatest temperature rise in Fig. 2.2
is δT = 0.2°C.

Finally, we show that the above analysis is consistent with our description based
on a non-instantaneous nonlinearity as presented in Section 2.4. Note that Eq. (2.12)
couples to the equation of motion for the cavity field α via δT , which appears in ∆̃

through δn:

iα̇ =

(
−∆− i

Γ

2
−ωL

1
n

dn
dT

δT
)

α + i
√

κ1F. (2.16)

Using Eq. (2.14c) and setting w ≡UT
S
R δT and τ ≡ C

S (note C
S has unit of time), the

new form of the coupled equations of motion read:

iα̇ =

(
−∆− i

Γ

2
+w

)
α + i

√
κ1F, (2.17a)

ẇ = [UT N −w]/τ. (2.17b)

This new form is identical to Eqs. (2.3). Therefore, we can conclude that the model pro-
posed in this Appendix, derived by inspecting coupled dynamics of the oil temperature
and light field, is mathematically identical to our model in terms of a non-instantaneous
nonlinearity with exponential memory kernel.

2.8.2 Calculation details
Here we provide further details about the calculations, and we explain how parameter
values were determined or selected. Let us first consider the steady-state calculations
based on Eq. (2.1) and presented in Fig. 2.2. In particular, we fitted the steady-state
photon number |α|2 to the experimental transmitted signal (∝ |α|2) for a laser power
P = 150 µW. The model parameters are the photon-photon interaction strength U , the
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total loss rate Γ, the driving amplitude F , and the input-output leakage rates κ1,2. At
first sight, it may seem that these five parameters can be freely adjusted in order to fit
the measured lineshape. However, as explained next, we do not have this freedom due
to several considerations and constraints.

The starting point of our analysis is the realization that Eq. (2.2) is a mean-field
model neglecting quantum fluctuations. Hence, the value of each parameter individually,
or of |α|2, is irrelevant. The spectral lineshape is entirely determined by the ratio
U |α|2/Γ. In particular, the linear regime is characterized by U |α|2 ≪ Γ. Bistability
emerges for U |α|2 ≳ Γ.

Next, we explain how the model parameters relevant to the fit in Fig. 2.2 are set.
First, the value of Γ is determined by fitting a Lorentzian function to the measured
lineshape in the linear regime (P = 20 µW). Second, note that κ1 is just a multiplicative
factor for F . In fact, we could have defined an effective driving amplitude F ′ =

√
κ1F

in Eq. (2.1) and not introduced κ1 at all. We include κ1,2 in our model for consistency
with standard input-output theory, and to have the right units for F . Therefore, we
set κ1 = γ/2 without this choice having any impact on our analysis. Furthermore, the
value of κ2 and γ do not need to be specified in the calculation at all. Only Γ needs to
be specified. Third, we set U = 0.005 Γ. This choice determines the number of photons
|α|2 involved in the bistability and the critical driving amplitude Fc needed to reach
the bistable regime. Note, however, that any spectral lineshape can be attained for any
value of U by scaling F (which determines |α|2) accordingly. Therefore, our choice
of U does not impact our analysis. Based on the above considerations and the choice
of U , we are left with F as the only adjustable parameter used to fit the calculated
lineshape to the measured lineshape. At this point, we would like to note an additional
constraint related to the critical driving amplitude Fc for which bistability emerges.
In particular, for F = Fc we have U |α|2 ∼ Γ. Experimentally, we can estimate Fc by
performing dynamic hysteresis measurements at different powers. Fc then corresponds
to the minimum laser amplitude for which bistability is observed. Consequently, any
laser amplitude can be referenced to Fc. In this way, we find that the value F/Fc = 1.52
(as obtained from the calculations) giving the best fit to the experimental data is fully
consistent with our experimental estimate of F/Fc ≈ 1.5. Finally, we note that the fact
that F/Fc is the relevant way to express the driving amplitude in our mean-field model,
combined with the fact that κ1 determines Fc, further supports the statement that the
value of κ1 we selected is irrelevant to our analysis of the spectral lineshape.

For dynamic hysteresis calculations based on Eqs. (2.3), we use the same parameter
values as mentioned above. In addition, we set the thermal relaxation time to be
τ = 104 Γ−1. Our choice of the value of τ , which is somewhat shorter than the
experimental one as explained in Section 2.4, is based on two considerations. First,
calculations using the experimental value of τ will be extremely long and memory-
expensive. Second, as long as τ ≫ Γ−1, the physics of dynamic hysteresis in our
single-mode cavity remains qualitatively the same. A longer τ will simply shift the
maximum hysteresis area to slower scans speeds, and will not change the shape of

31



CHAPTER 2. UNIVERSAL SCALING OF THE DYNAMIC OPTICAL HYSTERESIS OF A TUNABLE
CAVITY WITH NON-INSTANTANEOUS NONLINEARITY

𝛼
2

0 1 2 3
0

50

100

150

τ↑ τ↓ Γ𝑡 (× 104)

Figure 2.7: The black curve is a simulated trajectory of the photon density
|α|2 as a function of time. The red line indicates switching events between
the two meta-stable states. τ↑ and τ↓ are the residence times in the high
and the low density state, respectively. For the calculations, we set Γ = 1,
γ = Γ/6, κ1 = Γ/2, F = 5

√
Γ, ∆ = 1.216 Γ, U = Γ/40, τ = 20/Γ, D = 2 Γ,

and β = 3×104.

the hysteresis area curve as a function of the scanning speed. Therefore, we select a
sufficiently large value of τ that still allows us to perform the calculations within a
reasonable (∼ days) time.

The scans we performed to calculate the hysteresis area consist of varying the
detuning ∆ in a linear and symmetric way from −20 Γ to 20 Γ. Finally, since the
equations of motion are deterministic, it is sufficient to calculate the response for only
one period for each T .

2.8.3 Residence time analysis
Here we explain how the residence time distributions (RTDs) in Fig. 2.6 are calculated.
We consider the influence of white noise in the laser amplitude and phase by adding
two stochastic terms to the right-hand side of Eq. (2.3a). Thus, the equations of motion
become:

iα̇(t) =
(
−∆− i

Γ

2
+w(t)

)
α(t)+ i

√
κ1F +Dζ (t), (2.18a)

ẇ(t) =
[
U |α(t)|2 −w(t)

]
/τ. (2.18b)

D is the standard deviation of the noise. ζ (t) = (ζ1(t)+ iζ2(t))/
√

2 accounts for noise
in amplitude and phase. Here, ζ1 and ζ2 are both Gaussian white noise with zero mean
and unit variance, i.e., ⟨ζi(t)⟩= 0 and ⟨ζi(t)ζi(t ′)⟩= δ (t − t ′). In Fig. 2.7, we show a
typical trajectory of the photon density |α|2, obtained by simulating Eqs. (2.18) using
a fourth order Runge-Kutta algorithm. F and ∆ are fixed in the bistable regime. As
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Figure 2.8: Single-shot measurements of dynamic hysteresis when ∆/Γ is
scanned at a constant power P = 150 µW and three different speeds: (a) 49ν ,
(b) 7ν , and (c) ν . The slowest scanning speed is ν = 0.74 µm/s. The driving
conditions are the same as in Fig. 2.2.

indicated by the red line, the mean value of |α|2 randomly switches between two meta-
stable states. The switching times are determined using a standard Matlab function.
Given a trajectory x1,x2, ...,xN containing K changepoints, the function finds the set of
{xk} changepoints that minimizes the cost function

J(K) =
K−1

∑
r=0

kr+1−1

∑
i=kr

δ
(
xi; χ

([
xkr ...xkr+1−1

]))
+βK. (2.19)

Here, xkr is the rth changepoint in the signal and χ
([

xkr ...xkr+1−1
])

is the empirical
estimate of the desired statistical property, in our case the mean, for the subtrajectory
xkr ...xkr+1−1. Furthermore, δ measures the square of the difference between a point xi

and χ
([

xkr ...xkr+1−1
])

, and β is a fixed penalty.
To obtain a large number of switching events, we performed simulations for 240

different realizations of the noise and combined the residence time statistics. In each
of these simulations, the system evolved over a time Γt = 106. Simulations were
performed for two values of the thermal relaxation time: Γτ = 10−2 and Γτ = 20. In
both cases, we obtained more than ∼ 106 switching events in total, thereby ensuring
good statistics.

The time intervals between the switching events are known as the residence times
τ
(i)
↑,↓. These are the time intervals in which the system resides in either the high or the

low density state. Figure 2.6(a) and Fig. 2.6(b) show the residence time distribution
(RTD) in the lower metastable state for Γτ = 10−2 and Γτ = 20. These two values of
the thermal relaxation time result in exponential and peaked RTDs, which correspond
to Markovian and non-Markovian dynamics, respectively.

2.8.4 Dynamic hysteresis influenced by fluctuations
Here we show the influence of noise on our dynamic hysteresis measurements. In
Fig. 2.8, we plot single-shot hysteresis scans for the same three scanning speeds
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considered in Fig. 2.3(a). For fast scans, Fig. 2.8(a) shows that the hysteresis cycle
is only marginally affected by the noise. For intermediate-speed scans, Fig. 2.8(b)
shows some differences from shot-to-shot. Finally, Fig. 2.8(c) shows pronounced
shot-to-shot differences for slow scans. Despite the large differences from shot-to-shot
in slow scans, our mean-field model neglecting fluctuations [Eq. (2.3)] qualitatively
captures the observed behaviour in average dynamic hysteresis scans. The success
of the deterministic model is evidenced by the good agreement between experiments
and theory in Fig. 2.3 and Fig. 2.4. However, as Fig. 2.8 suggests, for slow scans
noise plays an increasingly dominant role. This is the reason for which we restricted
the scanning speed in our experiments to the range plotted in Fig. 2.4. We believe
that the shot-to-shot deviations we observed in the hysteresis cycle are mainly due
to the influence of colored noise in the detuning ∆. This colored noise results from
mechanical fluctuations of our mirrors which have a high-frequency cutoff. At high
speeds, however, the mechanical noise strength is negligible and only the noise in the
laser remains.
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Chapter 3

Observation of optical bistability and
spontaneous symmetry breaking in a
plasmonic grating inside a nonlinear

waveguide

We investigate the response of a laser-driven metallic grating embedded in
an oil layer with thermo-optical nonlinearity. At sufficiently large powers the
laser transmission becomes bistable and self-sustained oscillations emerge
in the diffracted intensities by the grating. Diffracted intensities by the −1
and +1 diffraction orders start to oscillate in-phase, out-of-phase, or become
uncorrelated, all upon a ∼ 1% variation of the laser power. Since the system
and illumination are mirror-symmetric, the termination and onset of regimes
with equal intensity radiated by the −1 and +1 diffraction orders correspond
to spontaneous symmetry-breaking and symmetry-restoration transitions.
Finally, we also demonstrate a regime in which the diffracted intensities
show periodic spikes while the transmitted laser intensity oscillates in syn-
chrony; the spikes are reminiscent of the firing of neurons and other excitable
systems.
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3.1 Introduction

Metallic nanostructures support surface plasmon resonances due to the collective
oscillation of conduction electrons driven by the electromagnetic field. At the reso-
nance frequency, optical energy can be strongly concentrated in deep-subwavelength
nanoscale volumes [173]. The resultant local field enhancements have drawn great
interest in various fields, including nonlinear optics [8] and related applications to
imaging and biology [174]. Indeed, it has been widely disseminated that nanostruc-
tured noble metals have some of the largest third-order nonlinear susceptibilities χ(3)

of all naturally occurring materials at optical frequencies [2]. The large χ(3) response
of noble metals has been evidenced in various experiments involving harmonic gen-
eration [175, 176], two-photon luminescence [177], and four-wave mixing [178], for
example. However, the simplest and most universal feature of continuous-wave co-
herent nonlinear optics — optical bistability— has never been realized using the χ(3)

response of noble metals. The reason for this is simple: despite being highly nonlinear,
metals are also very lossy. It turns out that the losses (Joule heating) of noble metals are
so strong that, at large laser intensities needed for bistability, metallic nanostructures
melt or even explode [179] before displaying nonlinearities under continuous-wave
illumination. Recall that, as explained in Chapter 1, the threshold power for observing
optical bistability is determined by the ratio of the losses to the nonlinearity strength.
Thus, the large nonlinearity of noble metals has been offset by the larger losses, except
under pulsed excitation. Indeed, all nonlinear optical phenomena of coherently-driven
nanostructured metals to date have involved pulsed excitation. An ultrashort optical
pulse can provide a sufficiently high intensity for a short time (e.g., ∼ 100 fs), thereby
driving the metal to the nonlinear regime at low average power. Afterwards, the metal
can cool until the next high-energy pulse arrives. In contrast, under continuous-wave
illumination, the constant heating of the metal at moderately large average powers
leads to its degradation.

While optical nonlinearities under pulsed excitation are interesting and useful in
various areas, there are many applications for which continuous-wave nonlinearities
are needed. Beyond the well-known relevance of optical bistability to switching and
memories, several other applications of nonlinear resonant nanostructures and arrays
thereof have emerged in recent years. For example, nonlinear gratings can be used for
non-reciprocal light transport [180], and complex nonlinear optical systems can be used
as neural networks for pattern recognition and information processing in general [181].
In view of these exciting recent developments, we decided to pursue the realization of
optical bistability in an array of metallic structures, starting with a simple 1D grating.
For the reasons explained above, we could not rely on the nonlinearity of the metal
alone to achieve this. Therefore, we investigated a grating covered by oil, which
has a strong thermo-optical nonlinearity as discussed in the previous chapter. In this
context, we note that, to date, we know of a single experimental report of optical
bistability in a plasmonic system [182]; the nonlinearity in that experiment is due
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to a polymer on top of a metallic grating, and it is induced by a control beam in a
pump-probe type configuration. In the ∼ 16 years that have followed that publication,
there has been no other experimental report of optical bistability in any resonant
plasmonic system, even though research related to optical bistability has flourished in
various photonic platforms [29, 41, 46, 105, 126, 154, 183–186] and there have been
many theoretical/numerical works on optical bistability in plasmonic systems [187–
190]. Moreover, in our view, the results in Ref. [182] provide insufficient evidence of
bistability. The presence of a pump-induced nonlinearity and dynamic hysteresis for a
probe beam is clear. However, as it is well known in the nonlinear dynamics community,
a system can display dynamic hysteresis without bistability [191]. Therefore, the work
in this chapter was motivated by the desire to realize what is, in our view, a clear
demonstration of optical bistability in a periodic metallic system that is coherently
driven at a single frequency. We reckon this as a first and decisive step towards realizing
more complex systems, like metasurfaces, where functionalities can be derived from
the interplay of nonlinearity and geometry.

This chapter presents experimental results obtained on a nonlinear one-dimensional
metal grating driven by a continuous-wave laser. To realize a highly nonlinear response,
we cover the grating by cinnamon oil. Beyond observing optical bistability, we demon-
strate a variety of fascinating dynamical effects emerging as the laser power is varied
in the nonlinear regime. In particular, we observe stable limit cycle oscillations of the
diffracted intensities by the grating. Surprisingly, in certain regimes, sections of the
intensity patterns radiated by the −1 and +1 diffraction orders oscillate out of phase or
display random (possibly chaotic) behaviors. These behaviors are clear manifestations
of spontaneous symmetry breaking (SSB), where a symmetric system suddenly ends
in an asymmetric state. To the best of our knowledge, this is the first demonstration
of SSB in any plasmonic system or grating. Finally, exploring the response of our
grating in another regime, we discover spontaneous emergence of periodic spikes in
the diffracted intensities. This behavior is reminiscent of excitable systems such as
neurons.

3.2 Sample and linear response

Figure 3.1(a) shows a scanning electron micrograph of the aluminum grating we
investigate in this chapter. The grating stands on a glass substrate, and comprises
rectangular wires with 70 nm width, 90 nm height, and 366 nm lattice constant. The
wires are 300 µm long, such that the sample can be considered effectively infinite along
that direction. We chose the transverse dimensions and lattice constant to get a strong
and narrow linewidth (for plasmonic standards) optical resonance due to the first order
diffraction around 532 nm. This is the wavelength of our laser, and for which we have
characterized the nonlinear optical response of oils as discussed in the previous chapter.
Our theory collaborators, Jaime Abad Arredondo, Antonio I. Fernández Domínguez,
and Francisco García Vidal (Madrid), performed a series of COMSOL simulations
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Figure 3.1: (a) Scanning electron micrograph of the aluminum grating on a
glass substrate studied in this chapter. The grating’s wires have an average cross
section that is 70 nm wide and 90 nm high. (b) Schematic of the plinth-oil-
grating sample used for optical experiments, indicating the refractive indices of
the various layers. (c,d,e) White light transmittance spectra for the grating in (a),
covered by a layer of cinnamon oil with variable thickness t as indicated above
each panel. The red dashed line in all three panels indicates the wavelength of
the laser used in all nonlinear experiments discussed ahead.

which enabled us to determine these dimensions as optimal based on the desired
spectral features and fabrication feasibility. The grating was subsequently fabricated
by the AMOLF Nanolab technical staff using standard electron-beam lithography,
electron-beam evaporation, and lift-off methods.

We covered the grating with a layer of oil to get a strong nonlinear optical response.
We first used olive oil, as in the previous chapter. However, we found that the maximum
power of our laser (∼ 300 mW) was barely sufficient to reach optical bistability in our
grating. We therefore replaced olive oil with cinnamon oil, since the latter has a stronger
thermo-optical nonlinearity at 532 nm. The enhanced thermo-optical nonlinearity of
cinnamon oil is mainly due to its stronger light absorption, which results in a greater
temperature rise and refractive index change at a given laser power. This enhanced
nonlinearity enabled us to reduce the threshold power for optical bistability by roughly
a factor of two. The nonlinear refractive index of cinnamon oil is ∼ 20 times larger than
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that of olive oil, as estimated through measurements of nonlinear diffraction (not shown
here) by other group members. However, the threshold for bistability is only reduced
by a factor of ∼ 2 in our experiments because the strong nonlinearity is associated with
stronger absorption. Indeed, as explained in the introduction, the threshold power for
bistability is determined by the ratio of the dissipation rate to the nonlinearity strength.

To keep the oil layer constant and control its thickness, we placed a glass plinth
on top of the sample. The plinth has an area of 500×500 µm2, which is larger than
the grating area of 300×300 µm2. A schematic of the full sample (substrate, grating,
oil, and plinth) is shown in Fig. 3.1(b). We control the position and orientation of the
plinth and grating using piezoelectric actuators. The actuators enable us to align the
glass substrate and plinth parallel to each other, and to control the thickness t of the oil
layer with nanometer precision.

We first discuss the linear response of our oil-covered grating. Figures 3.1(c-e)
show linear transmittance spectra corresponding to three different thicknesses of the
cinnamon oil layer. The sample is illuminated at normal incidence by a collimated white
light beam from a halogen lamp. The incident light is linearly polarized perpendicular
to the grating wires, i.e., parallel to the lattice vector. The transmittance is T =
(Tg −b)/(T0 −b), with Tg the transmitted intensity through the full structure (substrate,
grating, oil, and plinth), b the background intensity, and T0 the transmitted intensity
through the substrate, oil and plinth only. All intensities are wavelength dependent. We
estimate the thickness t of the oil layer via the display of our calibrated closed-loop
piezoelectric actuator, which we use to displace the grating along the optical axis. We
define position ‘zero’ to be where the grating and plinth crash. This method is not
very precise near the crashing point. Moreover, a tiny misalignment between the plinth
and grating means that the layer thickness depends on the position in the plane of
the grating. For these reasons, we can only specify an upper bound t < 1 µm for the
thinnest oil layer considered in Fig. 3.1(c). Moreover, the estimated values of t for
thick waveguides (t > 10 µm) have an uncertainty of ±3 µm.

The transmittance dip observed around 530 nm for all three layer thicknesses in
Figs. 3.1(c-e) corresponds to a lattice resonance. Its resonance wavelength is roughly
given by the periodicity times the refractive index of the glass substrate, i.e., 366 nm ×
1.45 = 531 nm. This suggests that the in-plane diffracted mode mainly resides in the
glass substrate. While this is not ideal for maximizing the thermo-optical nonlinearity
due to the oil, we will show that nonlinear optical effects still arise. Those effects are
evidence of the finite overlap between the diffracted light field and the oil, since they
never arise in the absence of oil. The resonances at longer wavelengths in Figs. 3.1(c-e)
correspond to guided modes. These modes are confined to the oil layer, which has a
larger refractive index of noil ∼ 1.59 than the index ng ∼ 1.45 of the glass substrate
and plinth. Light is in/out-coupled to these quasi-bound guided modes via diffraction
from the grating.

Comparing Figs. 3.1(c-e) to each other reveals that the central wavelength,
linewidth, and number of guided modes depends on t. This is the expected behavior
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for guided modes. The trend in Figs. 3.1(c-e) shows that, as t increases, many narrow-
linewidth guided modes are increasingly packed within the measured spectral range.
The coupling efficiency into these modes progressively decreases as t increases, due
to their decreasing overlap with the grating. For this reason, the magnitude of the
corresponding transmission dips is reduced for the thickest waveguide in Fig. 3.1(e).
Nonetheless, we note that many not-so-strong guided mode resonances still arise around
the lattice resonance for the thicker waveguides.

3.3 Laser diffraction measurements in the linear
regime

Apart from the transmittance spectrum, the guided modes are also observed in the
reflection of a laser from the grating. Figures 3.2(a,b) show real and momentum space
measurements, respectively, of the reflection of a 532 nm continuous-wave laser beam
at normal incidence. The oil layer over the grating is 3 µm thick. The input laser
power is ∼ 10 mW, which is sufficiently low to ensure a linear response. We used a
20× microscope objective with NA = 0.4 for excitation and collection. The collimated
laser beam half-fills the back aperture of the objective and is focused onto the sample.
We used a f = 300 mm Fourier lens and a f = 1000 mm tube lens for imaging in
momentum and real space, respectively. Ahead, Fig. 3.4 illustrates a setup similar to
the one used for these reflection measurements.

The real space measurements in Fig. 3.3(a) show two series of bright dots appearing
symmetrically on the left and right sides of the direct reflection of the laser. We believe
that the dots are guided modes which are outcoupled via diffraction from the grating.
Our belief is based on two main observations. First, the role of diffraction is evident
in that the bright dots are always aligned along the horizontal axis, i.e., parallel to
the grating vector. No bright dots are ever observed in the vertical direction for our
one-dimensional grating. Second, the horizontal positions of the dots in the camera
depend on the waveguide thickness. In particular, a given pair of dots (at equal distance
from the center) shifts towards the center of the image in synchrony when we gradually
decrease the waveguide thickness. This is the expected behavior based on the dispersion
relation of guided modes and the mirror symmetry of the diffraction grating.

While we cannot yet establish if each bright dot in Fig. 3.2(a) uniquely corresponds
to a guided mode (or a superposition of modes), we can attribute with reasonable
confidence the series of bright dots to the −1 and +1 diffraction orders. Figure 3.2(c)
illustrates the mechanism by which we think the series of bright dots arise. The incident
beam is diffracted by the grating into the oil layer at ±θ angles. The diffraction angle
is determined by the grating equation sinθ = λ/(dnoil) where λ is laser wavelength,
d is the grating constant, and noil is the cinnamon oil refractive index. The diffracted
beams will traverse along the grating vector direction and reflect between two glass-oil
interfaces. Each time they interact with the grating again, they will be out-coupled in
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the normal direction and collected by the objective, resulting in a horizontally displaced
set of bright dots imaged in real space.

Figure 3.2(b) shows the complementary measurement in momentum space, for the
same system and laser power as in Fig. 3.2(a). Here, we observe vertical bright and
dark bands on top of concentric circular fringes due to the reflected laser beam. The
observed bands are actually conic sections, which only appear to be vertical because of
the limited momentum range of our imaging apparatus. Figure 3.2(d) illustrates the
physical mechanism by which these bands are formed. The figure shows cross-sections
of the free-space, +1 diffraction, and −1 diffraction light cones, in glass and oil; these
cross-sections are circles indicated by black curves. The location at which the cones are
intersected, which determines the radius of the observed circles in Fig. 3.2(d), is taken
at a frequency corresponding to our laser frequency. The guided modes are represented
by the red circles residing in between the light cones in glass and oil. Based on a
3 µm thickness for the oil layer, we plot 9 guided modes in Fig. 3.2(d). This number is
consistent with our observation in Fig. 3.2(b). Due to Bloch’s theorem, the periodicity
of the grating results in a repeated pattern of the guided modes shifted by grating
vectors G⃗ in both positive and negative kx directions. As a result, the guided modes
become accessible to the numerical aperture of our objective, which is represented as
the central black dashed line in Fig. 3.2(d). However, since the excitation laser beam
half-fills the NA, we only excite the modes within the blue region. In this way, we can
establish that indeed the stripes observed in Fig. 3.2(b) are the guided modes.

We note that our real and momentum space descriptions each only partially explain
the observed phenomena. The real space description, based on treating the diffracted
beams as rays, explains the horizontal displacement of bright dots in Fig. 3.2(a).
However, it does not explain the relation between those dots and the guided modes
in the oil layer. Conversely, the momentum space description in Fig. 3.2(d) relates
the observed vertical bands in Fig. 3.2(b) to guided modes. However, the relation of
those bands to the dots in real space is unclear. Detailed calculations or simulations
accounting for all experimental conditions seem to be the only way to fully establish
the origin of the various features. While this would be valuable, it is not crucial for the
remainder of this chapter.

In the rest of this chapter, we focus on real space measurements for reasons that
will become clear ahead. Moreover, we will investigate 30 µm thick oil layer. For this
thicker waveguide, the bright dots are further separated from the direct laser reflection.
This will be convenient for nonlinear experiments presented ahead. In preparation
for those results, Fig. 3.3 shows real space measurements like the one in Fig. 3.2(a)
but now for the 30 µm thick oil layer. Figures 3.3(a,b) show the two-dimensional
reflected intensity distribution, and Figs. 3.3(c,d) show cuts of Figs. 3.3(a,b) integrated
vertically within the region enclosed by the white dashed lines in Figs. 3.3(a,b). All
these measurements were conducted using a laser power of 27 mW, which makes the
system response approximately linear. Figures 3.3(a,c) and Figs. 3.3(b,d) are recorded
20 ms apart in time, under nominally identical conditions. We present two sets of
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Figure 3.2: Reflection of a 532 nm continuous-wave laser beam normally
incident on the oil-grating system, measured in (a) real image space and in (b)
momentum space. The oil layer has 3 µm thickness. (c) Ray-tracing analysis to
explain the displaced diffraction dots in (a). The angle θ is determined by the
diffraction equation with λ the laser wavelength, d the grating constant, and
noil the cinnamon oil index. (d) Momentum space calculation of guided modes
in our oil layer and at our laser frequency. The red curves represent guided
modes, which are bounded between the light cones in glass and oil. The center
black dashed circle indicates the collection aperture of the objective NA. Blue
circles indicate the excited momenta using our laser beam which half-fills the
objectives.
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Figure 3.3: Measurements of the reflection of a 532 nm continuous-wave laser
beam normally incident on the oil-grating system. The incident laser power is
27 mW, which is more than 5 times smaller than the threshold for bistability
shown in Fig. 3.5. (a) and (b) are two reflected intensity distributions recorded
20 ms apart in time under nominally identical conditions. The white scale bars
indicate 10 µm. (c) and (d) are obtained by integrating vertically the intensity
within the regions enclosed by the white dashed lines in (a) and (b), respectively.
The center bright spots in (a) and (b) correspond to the direct reflection of the
laser beam. A series of bright dots positioned mirror-symmetrically around
the central red dashed line are due to guided modes that are outcoupled via
diffraction from the grating; see text for details on the interpretation of the dots.
We use arrows of the same color (red, blue or green) to indicate pairs of dots
located symmetrically about the mirror symmetry axis, indicated by red dashed
lines in (a,b).
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nominally identical measurements (instead of just one) to evidence the reproducibility
of our results. While not shown here, we verified that the observed linear reflected
intensity pattern is reproducible (within the limitations of the observed noise) across
timescales of several minutes at least.

The measurements in Fig. 3.3 evidence the mirror symmetry of the reflected
intensity pattern. The symmetry axis is indicated by the red dashed line in Figs. 3.3(a,b).
Notice how the bright dots on the left and right side of the symmetry axis (e.g., the dots
indicated by the colored arrows) have equal amplitudes and even mirror-symmetric
shapes. In the next section, we will demonstrate how this mirror symmetry of the
reflected intensity pattern can be spontaneously broken at sufficiently large laser powers.
The data shown in Fig. 3.3 essentially serves as a reference to be compared with Fig. 3.6,
where we will present a counterpart measurement in the nonlinear regime.

3.4 Setup for measuring intensity-dependent transmis-
sion and diffraction

Next we investigate the intensity-dependent transmission and diffraction of the 532 nm
continuous-wave laser from our sample. For these experiments, we constructed the
setup shown in Fig. 3.4. The laser intensity was time-modulated using a polarizing
beam splitter and a half waveplate mounted on a motorized rotary stage. Another
half waveplate was used to ensure that the incident light polarization was parallel to
the grating vector. Two 10× objectives (NA = 0.25) were employed for illuminating
the sample with the laser and collecting the transmitted intensity. Before entering the
objective, the laser beam had a diameter of 4 mm, which is less than the 10 mm aperture
of the objective. Therefore, the laser beam was loosely focused onto the grating plane.
The transmitted intensity was measured by a photodetector. In the reflection path,
a flip mirror allowed to direct the reflected intensity into one of two different paths.
One path led to a camera, used to obtain spatial information at a relatively low speed
at 50 frames/second. This is the same camera used to acquire the measurements in
Fig. 3.2 and Fig. 3.3. The other path led to a setup with two arms, each containing a
photodetector for fast (up to 50 MHz) measurements. These photodetectors recorded
the diffracted light intensity, which is similar to the bright dots in Fig. 3.2 and Fig. 3.3
but emerge in the nonlinear regime as will be described in the next section. To spatially
isolate the dots, we create two intermediate image planes where we place two pinholes
for signal selection. The area of the reflected intensity pattern selected by the pinholes
is shown ahead.
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Figure 3.4: Schematic of the optical setup used to measure the intensity-
dependent transmission and diffraction of laser light from our sample. PBS is
polarizing beam splitter; BS is beam splitter; obj is objective; PH is pinhole;
PD is photodetector; λ/2 is half waveplate. The laser intensity is modulated by
the PBS and λ/2. Another λ/2 is used to ensure that the input laser is linearly
polarized parallel to the grating vector before entering the objective. The laser
transmission is measured by a PD. The flip mirror allows sending the reflected
intensity either to a camera or to a two-arm setup with photodetectors.

3.5 Optical bistability and emergent spatial patterns

Figure 3.5 shows typical results obtained in transmission and reflection (using the
camera) when scanning the laser power up and down within 5 seconds. The thickness of
the oil layer is 30 µm. Figure 3.5(a) shows time traces of the input power and transmitted
power, respectively. Notice the switch at 2.39 s from a high transmission state to a low
transmission state. The abruptness of the switch indicates a sudden transition between
two stable states (i.e., the existence of bistability), beyond the obvious existence of
optical hysteresis. To show the bistability more clearly, in Fig. 3.5(c) we plot the
transmittance versus the input power. Black and green curves correspond to increasing
and decreasing the input power, respectively. Clearly, the transmittance switch leads to
a wide bistability range and a large optical hysteresis when the input power is decreased.
We also observe an overshoot right after the transmittance switch; see Fig. 3.5(b). The
overshoot is due to the finite thermal relaxation time of the oil, as discussed in the
previous chapter. The half width at half maximum of this overshoot (60 µs) is longer
than in the oil-filled micro-cavity (16 µs), presumably because of the larger optical
mode volume in the oil-covered grating system. The transmittance in Fig. 3.5(c) also
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displays a weak modulation as a function of the input power, which is most visible
at low input powers. We are unsure about the origin of this effect. However, since
the frequency of this weak modulation increases with the thickness of the oil layer
(measurements not shown here), we suspect that it is due to an etalon effect in the oil
layer.

Figures 3.5(d,e) show real space reflection images observed right before and af-
ter the transmittance switch, displaying remarkable discrepancy. Before the switch,
Fig. 3.5(d) shows a simple circular pattern due to the direct reflection of the laser beam;
the bright dots from Fig. 3.3 are absent because they are positioned far from the direct
reflection (center spot) due to the thick waveguide and are therefore outside of the field
of view of the objective. After the switch, Fig. 3.5(e) shows a more complex pattern.
The new pattern comprises a series of rings and bright dots, as before, symmetrically
located on the left and right sides of the directly reflected beam. This complex pattern
evolves as the laser power first increases and then decreases. However, the general
structure (rings plus dots) remains the same until the end of the hysteresis loop at low
powers, where the system transitions back to the initial state with high transmittance.
As before, we attribute the newly emerged bright dots to guided modes which are
outcoupled via diffraction from the grating.

Beyond the two snapshots of the reflected intensity pattern presented in
Figs. 3.5(d,e), we recorded a series of reflection images throughout the full hysteresis
cycle. The exposure time for each image was 20 ms, and the camera acquisition rate
was 50 frames/seconds. In this series of measurements, we observed that the bright
dots in the nonlinear regime blinked at various times after the high-to-low transmittance
switch. The dots suddenly brightened or darkened, sometimes in unison and sometimes
not, as the input power slowly changed. For example, Figs. 3.6(a,b) show two consec-
utive frames where the relative intensity of the same two dots changes abruptly. In
Fig. 3.6(a) the two dots highlighted by the green arrows have roughly equal intensity. In
contrast, in Fig. 3.6(b) the right dot is suppressed while the left dot remains practically
the same. This abrupt change in relative intensity can also be seen in the cuts shown
in Figs. 3.6(c,d). The green arrows, serving as reference, are at the same horizontal
positions as in Figs. 3.6(a,b).

The large intensity difference between the two dots in Fig. 3.6 is surprising based
on the symmetry of the illumination and of the grating. Based on the description in
Fig. 3.2(c), we will refer the dots on the left and right sides of the direct reflection
as the diffracted intensities by the −1 and +1 diffraction orders, respectively. The
excitation momentum wavepacket is symmetric around kin = 0. The grating wires have
mirror symmetry, meaning that the grating is not blazed. Furthermore, the oil layer
is translationally invariant in the plane of the grating. Hence, the power radiated at
positive and negative momenta should be equal. Equal diffracted intensities by the
−1 and +1 diffraction orders are indeed our observation in the linear regime (e.g.,
Fig. 3.3). A small difference between −1 and +1 diffracted intensities can still arise
because of imperfections in the grating, misalignments (e.g., of the excitation beam
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Figure 3.5: (a) Time traces of input and transmitted laser powers. The switch
at ∼ 2.39 s from a high to a low transmittance state leads to optical bistability
and hysteresis when reversing the direction of the input power scan. (b) a
zoom-in view of (a) right after the bistable switch around 2.3915 s, showing an
overshoot of 60 µs. (c) Transmittance as a function of the input power. Black
and green curves correspond to increasing and decreasing the input power,
respectively. (d) and (e) are reflection images recorded by a camera before (d)
and after (e) the switch, as indicated in (c).
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Figure 3.6: (a,b) Two consecutive measurements of the nonlinear reflected
intensity pattern. The exposure time for each image is 20 ms, and the image
in (b) is recorded immediately after the one in (a).The scalebars indicate 3 µm.
(c) and (d) are obtained by vertically integrating the intensity within the region
enclosed by the white dashed lines in (a) and (b), respectively. Green arrows
serve as references for indicating the locations of bright dots.
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or of the plinth), and/or differences between the optical paths. However, the mirror
symmetry of our linear measurements in Fig. 3.3 demonstrates that such effects are
marginal at most. Only in the nonlinear regime we observe major differences in the
radiated power by the −1 and +1 diffraction orders. In particular, the mirror symmetry
of the reflected intensity pattern is spontaneously broken as a function of the input
power. In the following, we will show that the nonlinear grating-waveguide system
actually undergoes a series of bifurcations where mirror symmetries are spontaneously
broken and restored.

3.6 Dynamics of (a)symmetric diffraction efficiency of
a nonlinear grating

The symmetry breaking observed in two consecutive frames in Fig. 3.6 suggests that
the relevant dynamics are faster than the camera acquisition rate. For this reason, we
constructed the two-arm setup shown in Fig. 3.4. To isolate the diffracted intensities
from the two equivalent dots corresponding to the −1 and +1 diffraction orders, we
first split and then imaged the reflected light at two different planes. At each image
plane, we placed a 150 µm diameter pinhole. The pinholes were co-centered with the
intensity maxima of two dots. The correct locations of the pinholes were established
and verified using additional flip mirrors and cameras not shown in Fig. 3.4. The dashed
circles in Fig. 3.5(e) indicate the diameter of the pinholes at the aforementioned image
planes. Since the dashed circles are only slightly wider than the intensity peaks inside,
the signals of interest were well isolated from other signals. Finally, each arm in the
setup ends in a 50 MHz photodetector. These allow to measure the optical dynamics
a million times faster than with the camera used to record the images in the previous
section.

Figure 3.7 shows the time trace of the transmittance as a black curve, and of the
diffracted intensities by the −1 and +1 diffraction orders as purple and orange curves,
respectively. The data in Fig. 3.7(a) is the same as in Fig. 3.5(c), but plotted as a function
of time to ease comparison between Fig. 3.7(a) and Fig. 3.7(b). The upper curve in
Fig. 3.7(b) is vertically displaced for clarity. Before the switch, when the grating is in
the high transmittance state, the two diffracted intensities display qualitatively similar
(not same) slow dynamical effects. We attribute the different ripples in the diffracted
intensities between 1 s and 2 s to inhomogeneities in the oil layer induced by the laser
absorption. Recall from Fig. 3.5(c) that the transmittance is weakly modulated at low
laser powers. Based on our observations (not shown) for various thicknesses of the
oil layer, we attribute that weak modulation to an intensity-dependent etalon effect.
That modulation, coupled to tiny imperfections in the system (e.g., slightly tapered oil
waveguide), results in slow density variations within the oil layer. These variations
explicitly break the symmetry of the diffracted intensities by the −1 and +1 diffraction
orders. An imperfect alignment of the pinholes and of the optics, i.e., explicit symmetry

49



CHAPTER 3. OBSERVATION OF OPTICAL BISTABILITY AND SPONTANEOUS SYMMETRY
BREAKING IN A PLASMONIC GRATING INSIDE A NONLINEAR WAVEGUIDE

 

 
 

 

0.4

0.2

0.1

0.3

Tr
an

sm
itt

an
ce

(a)

3

1

0

2

PD
 S

ig
na

l (
V

)

0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

(b) Left
Right

4.5

Figure 3.7: Time traces of the (a) transmittance, and (b) diffracted intensity by
the −1 and +1 diffraction orders as purple and orange curves, respectively. All
three time traces are recorded simultaneously. After the system switches to the
low transmittance state, signals in (b) display fast dynamics with qualitative
changes in behavior within short times. Figure 3.8 presents zoom-in view of
three dynamical regimes after the transmittance switch.

breaking in the detection rather than in the system, could also explain the intensity
differences observed in Fig. 3.7(b). However, below we evidence the nearly perfect
mirror symmetry of the same system on short timescales using the same setup. This
indicates that detection asymmetries due to the pinholes and/or optics are marginal at
most, and that system asymmetries are very small and only relevant on long time (e.g.
∼ 1 s) scales.

After the grating switches to the low transmission state, the two diffracted intensities
display dramatically different dynamics. Figure 3.8 zooms into three representative
time windows of the data in Fig. 3.7(b). Each time window is 15 ms, which is less
than the inverse acquisition rate of the camera. Within these time windows, the average
input power changes linearly with time by less than 0.3%, which is roughly equal to the
standard deviation of the laser noise. Therefore, the average input power is effectively
constant within each time window.

The three plots in Fig. 3.8 demonstrate qualitatively different regimes. Fig-
ures 3.8(a,c) display periodic oscillations of the diffracted intensities by the −1 and
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Figure 3.8: Zoom-in views of Fig. 3.7(b) at three time windows with equal time
span (15 ms), showing distinct dynamical regimes for the diffracted intensities
within the two dashed circles in Fig. 3.5(e) : (a) out-of-phase dynamics; (b)
uncorrelated dynamics; (c) in-phase dynamics. The center power for each
time window is labelled on the top-left of each panel. As we use a symmetric
excitation scheme, (a) and (b) correspond to a symmetry-breaking regime,
while (c) corresponds to a symmetry-preserving regime.
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+1 diffraction orders. These types of oscillations are known as limit cycles. Since the
laser power sustaining these oscillations is not modulated, they are called self-sustained
oscillations. The oscillation period is associated with (but not equal to) an intrinsic time
scale of the system, namely the thermal relaxation time. To the best of our knowledge,
this is the first observation of limit-cycle oscillations in any plasmonic system.

The intensities at the two dots due to the −1 and +1 diffraction orders oscillate
in phase in Fig. 3.8(a), but out of phase in Fig. 3.8(c). The former evidences a full
synchronization of the diffracted intensities by the −1 and +1 diffraction orders. This
synchronization, while non-trivial and its origin is not well understood, respects the
mirror symmetry of the system as expected. Notice also that the two intensity curves
practically overlap throughout the entire time window in Fig. 3.8(c). This evidences
the good alignment of the setup and of the pinholes. Upon misalignment (not shown),
the oscillation amplitudes are actually different.

Figure 3.8(c) shows the diffracted intensities by the −1 and +1 diffraction orders
oscillating out of phase. Out-of-phase limit cycle oscillations do not respect the
mirror symmetry of the system, illumination, and detection. Thus, their spontaneous
emergence upon changing the input power is direct evidence of spontaneous symmetry
breaking. To the best of our knowledge, this is the first observation of spontaneous
symmetry breaking in any diffraction grating or plasmonic system. It is also noteworthy
that the oscillation period in Fig. 3.8(a) is different from that in Fig. 3.8(c), the latter
being roughly twice longer. This change of period is indicative of period-doubling and
period-halving bifurcations of nonlinear dynamical systems [192]. At such bifurcations,
a symmetry is broken or restored and the period of limit-cycle oscillations changes.
Even simple, single optical mode, nonlinear dynamical systems with non-instantaneous
nonlinearity (as due to the thermal relaxation time of the oil in our system) have been
predicted to display cascades of bifurcations where the period of stable limit cycles
changes [33]. Thus, similar behavior can be expected in our more complex system.

Figure 3.8(b) also displays a surprising behavior: no correlation between the
two diffracted intensities by the −1 and +1 diffraction orders. The time window in
Fig. 3.8(b) is shortly after the one in Fig. 3.8(a). Thus, a small change in input power
(related to time) leads to qualitatively different behavior. We believe that the random
and uncorrelated dynamics in Fig. 3.8(b) are due to chaos. While we currently have
no formal way to distinguish between chaos and ‘just noise’ in these short time traces
which are certainly influenced by noise, the fact that they emerge between two regimes
of stable limit cycles is a strong indication that they are due to chaos. Indeed, it is
well known that nonlinear dynamical systems can undergo cascades of period-doubling
bifurcations leading to chaos. Conversely, period-halving bifurcations can lead a
system from chaos to stable limit cycles, i.e., order emerges from disorder through
small parameter changes. Indeed, the series of measurements in Fig. 3.8 demonstrate
how order can emerge from disorder and viceversa upon small changes in driving
power. Further experimental and theoretical research is needed to establish the exact
nature of these various dynamical regimes.
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Figure 3.9: Cross-correlation functions as a function of delay based on data
in Fig. 3.8 for (a) out-of-phase, (b) uncorrelated, and (c) in-phase regimes.
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auto-correlation functions in (d-i).
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In Fig. 3.9 we present a more detailed analysis of the data in Fig. 3.8. We calculate
normalized cross- and auto-correlation functions for the diffracted intensities by the
−1 and +1 diffraction orders. We choose a normalization method such that the value 1
(−1) corresponds to perfect correlation (anti-correlation). Details on the algorithm for
calculating the cross- and auto-correlation functions can be found in Appendix 3.9.1.
Figures 3.9(a-c) show the cross-correlation functions Rxy as a function of time delay
for the in-phase, uncorrelated and out-of-phase regimes corresponding to Fig. 3.8(a-c)
respectively. As expected, we observe: (i) a pronounced dip at zero time delay in
Fig. 3.9(a), indicating anti-correlation; (ii) no obvious peaks or valleys at any time
delay in Fig. 3.9(b), indicating no correlation; (iii) a strong peak at zero time delay in
Fig. 3.9(c), indicating correlation. Figures 3.9(a,c) also show oscillatory behavior with
decaying envelopes. The peaks (valleys) at small delays in Figs. 3.9(a,c) correspond
to delays of a multiple or half-multiple of oscillation periods for the in-phase and
out-of-phase regimes respectively. The decaying envelopes suggest that the similarity
between the two compared data vanishes for long time delays.

Figures 3.9(d-f) and Figs. 3.9(g-i) show auto-correlation functions Rxx as a function
of the time delay for −1 and +1 signals for the in-phase, uncorrelated and out-of-phase
regimes. The same color code for the −1 and +1 signals as in Fig. 3.7 and Fig. 3.8 are
used. Due to the normalization method, a value of 1 is always obtained at zero time
delay for these plots. Also, note that a positive time delay is equivalent to the counterpart
negative time delay with the same absolute value when calculating the Rxx. Therefore,
all auto-correlation functions are mirror-symmetric around zero time delays. For the
out-of-phase and in-phase regimes, the auto-correlation functions in Figs. 3.9(d,g,f,i)
also display oscillations as in Figs. 3.9(a,c) for the same aforementioned reason. For
the uncorrelated regime, Figs 3.9(e,h) show single narrow peaks at zero time delays
and the auto-correlation functions quickly decay within ∼ 0.3 ms; this is the expected
behavior for delta-correlated signals.

Finally, we provide some interpretations on the diffracted intensities by the −1 and
+1 diffraction orders. As mentioned in Section 3.3, it is not clear how these bright
dots in real space image are related to the guided modes in the oil layer. However,
based on the observed effects and basic setup information presented in this section, we
can propose plausible interpretations. First, note that a thick waveguide (30 µm) was
used in the measurements. For this thickness, the total number of modes supported by
the waveguide is roughly 75 for one polarization (our laser is polarized). As a result,
one may expect excitation of many modes, according to the momentum distribution
of the incident laser. Based on this expectation, one might believe that the bright dots
are due to the superposition of many modes in real space. However, our observation
of the sinusoidal limit cycles makes that interpretation very unlikely. In Fig. 3.8
we observed nearly perfect sinusoidal oscillations for isolated single dots. If those
single dots corresponded to superpositions of many guided modes, one would expect
a complex non-sinusoidal waveform due to the beating of many modes. Another
interpretation, albeit a highly unlikely one in our view, is that many (orthogonal) modes
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all spontaneously begin to oscillate sinusoidally and in phase. Thus, based on our
observations in this section, it seems to us that the most plausible explanation is that the
dots correspond to single modes. Nonetheless, further research is needed to establish
the exact nature of the dots.

3.7 Spontaneous oscillations

The results in the previous section motivated us to investigate the dynamics of our
system for various waveguide thicknesses and laser powers. Unfortunately, variations
in laser power induced slow changes (on the time scale of several minutes or longer) in
the oil layer, which we could not control despite our best efforts. These slow changes
prevented us from getting an extensive and consistent data set across a wide parameter
range. Nonetheless, in this section we present results obtained for a waveguide thickness
of 50 µm when ramping the laser power up and then parking it at a constant large value.
Our aim in presenting these results is simply to illustrate the fascinating nonlinear
dynamics that can emerge in our oil-covered grating in certain cases. To the best of our
knowledge, the phenomena here reported have never been observed in any plasmonic
system or diffraction grating.

Figure 3.10(a) shows time traces of the transmittance and diffracted intensities by
the −1 and +1 diffraction orders, using the same color code as in Fig. 3.7 and Fig. 3.8.
Black and purple curves are vertically displaced for clarity. These measurements were
obtained by increasing the laser power from 0 to 129 mW in 1.3 s, and keeping it at
129 mW for the rest of the measurement. Notice in Fig. 3.10(a) that, at 4.45 s which is
more than 3 s after the end of our protocol, the transmittance spontaneously switches
to a lower value. A similar transmittance switch was observed in the previous section,
and associated with the threshold for accessing the bistable regime. Here, however, we
observe a relatively long waiting time for the switch to occur after the mean laser power
and transmittance are fixed. We think that this waiting time is due to the laser power
being very close, but not quite enough, for the system to deterministically change state.
Hence, the system needs to wait (a random time) for a fluctuation in the absorbed laser
power to trigger the switch.

Immediately after the switch, the transmittance remains at a constant value. This
is similar to what we observed in Figs. 3.5(a,c) and Fig. 3.7(a). However, after a
second random waiting time, a fluctuation occurs and all three observables start to
oscillate shortly after. The fluctuation triggering these oscillations can be observed
in the zoom-in view presented in Fig. 3.10(b); see the transmittance slightly before
5.16 s. After this fluctuation, the transmittance gradually increases until it starts to
spontaneously oscillate with a sawtooth waveform around 5.183 s. Concomitantly, the
diffracted intensities by the −1 and +1 diffraction orders begin to display periodic
spikes in synchrony with the transmittance minima. This spike train is qualitatively
different from the sinusoidal oscillations shown in Fig. 3.8(c) in the previous section.
We are unsure of the origin of the spikes. However, it is worth mentioning that similar
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Figure 3.10: (a) Time traces for the laser transmittance (black), and diffracted
intensities by the −1 (purple) and +1 diffraction orders (orange) as indicated by
the white dashed circles in Fig. 3.5(e). Black and purple curves are displaced
vertically for clarity. The driving protocol consists of increasing the laser
power from 0 to 129 mW in 1.3 s, and keeping the power constant at 129 mW
thereafter. (b) Zoom into (a), centered around 5.2 s. Notice the tiny perturbation
in the transmittance around 5.16 s, after which the transmittance gradually
grows. After this growth time, all three observables begin to oscillate. The
incident laser power is unmodulated during the entire time of the oscillations,
meaning that these are self-sustained oscillations.
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Figure 3.11: (a) A zoom-in view of the transmittance time trace in Fig. 3.10(a).
The red circles indicate peaks of all displayed cycles, which are determined by
the standard peak-finding algorithm in MATLAB. (b) Time difference between
consecutive peaks as a function of time.

spiking behavior is characteristic of excitable systems such as neurons. It has therefore
occurred to us that the oil-grating system may have a narrow regime of excitability
above the bistability. Unlike bistability, excitability is associated with a single stable
state. Periodic spikes emerge when the system is excited, and makes excursions in
phase space across an unstable point.

Interesting aspects of the observed self-sustained oscillations are their duration
and robust period. We have observed such oscillations for more than 30 s, while the
period is ∼ 3 ms. Since the observation time was simply limited by the memory of our
electronics, we suspect that the oscillations may continue for even longer time than our
measurement limit. In Fig. 3.11, we analyze the robustness of the period in more detail.
Figure 3.11(a) shows a zoom-in view of the transmittance time trace, with red circles
indicating the peak of each cycle. The peaks were identified using a standard peak
finding algorithm in MATLAB. In Fig. 3.11(b) we plot the time difference between
consecutive peaks as a function of time. Each black dot corresponds to one cycle, and
its position in time is mid-way between consecutive peaks. The data in Fig. 3.11(b) can
be regarded as a running histogram or probability density function. Within a reasonably
large time bin (e.g., ∼ 0.5 s), regions with a high density of black dots correspond to the
running average of the periods. Interestingly, Fig. 3.11(b) shows that the oscillations
have a build-up time (of unknown origin) of about 7 seconds. During this time, the
period grows from ∼ 2.3 to ∼ 3.2 ms. After the build-up time, the period stabilizes at
∼ 3.2 ms and the oscillations persist indefinitely.

Finally, we would like to comment on the reproducibility of the experiments in
Fig. 3.10 and Fig. 3.11. We performed these experiments many times, using nominally
identical ramps and a fixed grating-waveguide system. However, the oscillations
emerged some of the times only. When the oscillations emerged, the shape of all three
waveforms and the period were practically the same as here reported. We strongly
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believe that the limited reproducibility of this behavior is due to an intrinsic feature
of nonlinear dynamical systems. In particular, nonlinear systems display an extreme
sensitivity to parameter changes within bifurcation cascades [192]. Changing the value
of one parameter (e.g., laser power or waveguide thickness) by less than 0.1% can result
in major qualitative changes to the phase space structure. Indeed, systems can transition
between limit cycles and chaos within extremely narrow parameter changes, even in
simple low-dimensional (e.g., three degrees of freedom) nonlinear systems. This
extreme sensitivity to parameter changes, combined with experimental imperfections,
may be the reason for which we could only reproduce the same behavior in some but
not all measurements. Nonetheless, we think it is important to report this fascinating
behavior which may appear in other systems or parameter regimes in a more controlled
fashion. Excitable behavior could open the door to using oil-covered extended systems,
like gratings or metasurfaces, for neuromorphic computing or information processing.
Indeed, the ability to display self-sustained oscillations is one of the key features of
many information-processing systems.

3.8 Conclusion

In summary, we demonstrated various dynamical regimes in the nonlinear response of
an oil-covered metallic grating driven by a continuous-wave laser. Our first result was
the observation of optical bistability in the laser transmission through the grating. The
most surprising results were found after crossing the bistability threshold. Monitoring
the diffracted intensities at opposite angles from the normal to the plane of the grating,
we discovered self-sustained oscillations wherein the diffracted intensities by the −1
and +1 diffraction orders can oscillate in-phase or out-of-phase. We also found regimes
in which the diffracted intensities by the −1 and +1 diffraction orders are uncorrelated.
Given that our symmetric system (by design) is driven symmetrically (kin = 0), out-
of-phase and uncorrelated dynamics by the −1 and +1 diffraction orders indicate the
breaking of a mirror symmetry for the diffraction efficiency. The regime of uncorrelated
dynamics observed between two stable limit cycle regimes is likely associated with
chaos. Indeed, the co-existence of intermittent periodic windows and chaos is common
within bifurcation cascades. Finally, in another regime we discovered periodic spikes
emerging spontaneously in the diffracted intensities by the −1 and +1 diffraction
orders. These spike trains emerge concomitantly with periodic saw-tooth oscillations
in the transmission.

Further experimental and theoretical studies are needed to establish the origin of
the various dynamical regimes evidenced in this chapter, and to possibly identify new
dynamical regimes through a more thorough scan of parameters. On the experimental
side, there is room for improvement in the level of control over the system. A better
control would enable a more careful characterization of the cascades of bifurcations
leading to the emergence and termination of limit cycles with different periods. To
achieve this, a more robust/reliable mechanical architecture for controlling the waveg-
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uide thickness would be helpful. In addition, a feedback-based control system for
reducing laser noise could also help. Despite these possible improvements, our results
have demonstrated the potential of oil-covered gratings as a new platform to study
nonlinear dynamics. The nonlinearity-granting scheme used in this chapter is readily
adaptable to other plasmonic/metasurface systems, which paves the way to study more
complex phenomena emerging from the interplay of nonlinearity and geometry. We
believe that such complex systems could be applied to realize intensity-controlled
wavefront shaping, or as neural networks for pattern recognition or other machine
learning tasks.
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3.9 Appendices

3.9.1 Details on the algorithm for calculating cross- and auto-
correlation functions

Given two real one-dimensional data vectors, X and Y , of the same length M, we
calculate the raw cross-correlation function as a function of index delay m without any
normalization as:

Rxy,raw(m) =

{
∑

M−m−1
n=0

[
X(n+m)− X̄

]
∗
[
Y (n)− Ȳ

]
, for m ≥ 0,

Ryx,raw(−m), for m < 0.
(3.1)

Note that in this definition of cross-correlation we subtract the mean values, X̄ and
Ȳ , of the two vectors from X(n+m) and Y (n), respectively, before the multiplication.
This definition is more generally referred to as cross-covariance. In signal processing,
the two terms, i.e., cross-correlation and cross-covariance, are interchangeable.

The raw auto-correlation function is acquired by setting Y = X in Eq. (3.1). Also,
if the signals are time series, the time delay is computed by multiplying the index delay
m by the time step used in the measurement.

As mentioned in Section 3.6, we use a normalization method such that the auto-
correlation function at zero time delay is always 1. This is achieved by applying a
normalization factor to the raw cross-correlation functions:

Rxy(m) =

√
1

Rxx,raw(0)∗Ryy,raw(0)
∗Rxy,raw(m). (3.2)
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Chapter 4

Fano lineshapes and mode splittings:
Can they be artificially generated or
obscured by the numerical aperture?

Fano resonances and Rabi splittings are routinely reported in the scientific
literature. Asymmetric resonance lineshapes are usually associated with
Fano resonances, and two split peaks in the spectrum are often attributed to
a Rabi splitting. True Fano resonances and Rabi splittings are unequivocal
signatures of coherent coupling between subsystems. However, can the same
spectral lineshapes characterizing Fano resonances and Rabi splittings arise
from a purely incoherent sum of intensities? Here we answer this question
through experiments with a tunable Fabry-Pérot cavity containing a CsPbBr3
perovskite crystal. By measuring the transmission and photoluminescence
of this system using microscope objectives with different numerical aperture
(NA), we find that even a modest NA = 0.4 can artificially generate Fano
resonances and Rabi splittings. We furthermore show that this modest NA
can obscure the anti-crossing of a bona fide strongly coupled light-matter
system. Through transfer matrix calculations we confirm that these spectral
artefacts are due to the incoherent sum of transmitted intensities at different
angles captured by the NA. Our results are relevant to the wide nanophotonic
community characterizing dispersive optical systems with high numerical
aperture microscope objectives. We conclude with general guidelines to
avoid pitfalls in the characterization of such optical systems.
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4.1 Introduction

4.1.1 Exciton-polaritons in a cavity with CsPbBr3

Metal halide perovskites (MHPs) are a promising class of materials for many opto-
electronic applications thanks to their unique properties. In particular, MHPs can have
strong optical absorption [193], high quantum yield [194] and tunable bandgap [195].
Furthermore, MHPs can be fabricated relatively easily and inexpensively [196]. These
and other features have generated much interest in MHPs for photovoltaics [197] and
light-emitting devices [198] mainly, but applications to lasers [199] and photo-/X-
ray detectors [200, 201] are also being investigated. Very recently, MHPs have also
attracted interest for fundamental research in strong light-matter coupling and nonlinear
optics. The formation of polaritons (i.e., strongly coupled excitons and photons) [202,
203] and their condensation [26, 78, 125, 204, 205] have been observed in various
photonic resonators containing different types of MHPs. Experiments under pulsed
excitation have revealed strong mutual interactions between MHP polaritons, resulting
in highly nonlinear phenomena even at room temperature [206]. However, nonlinear
effects have not been realized under continuous wave driving simply because MHPs
degrade under intense laser illumination before displaying optical nonlinearity. In this
vein, we decided to investigate the optical response of MHP polaritons in our tunable
cavity setup, first at room temperature and eventually at cryogenic temperatures. We
chose to work with CsPbBr3 since it is a stable MHP with bandgap around 532 nm,
which is the wavelength of our laser and the reflectivity maximum of our dielectric
mirrors.

This chapter reports results of optical experiments with a tunable cavity containing
a CsPbBr3 crystal at room temperature. To evidence strong exciton-photon coupling,
we measured transmittance and photoluminescence spectra as a function of the cavity
length. We decided to investigate these spectra using microscope objectives with differ-
ent numerical apertures. Surprisingly, we found certain spectral features resembling
Fano resonances and Rabi splittings — signatures of coherent light-matter coupling —
for some microscope objectives but not for others. In view of these findings, we con-
ducted a systematic study of how the numerical apertures of the microscope objectives
influence these measured spectra of tunable cavity systems. This chapter presents the
results of that study.

4.1.2 Fano resonance and Rabi splitting

Fano resonances and Rabi splittings have inspired countless efforts in photonics re-
search [207–210]. These two effects were discovered in quantum frameworks, yet
their essence can be easily recognized in classical models of coupled harmonic oscil-
lators [211–213]. When the oscillators are detuned and one is much more damped
than the other, interference effects lead to an asymmetric Fano-like resonance in the
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spectrum of the heavily damped oscillator [212]. Conversely, when the two oscillators
are strongly coupled, weakly damped, and tuned in resonance, the total energy is split
between two new eigenmodes at different frequencies [211, 213]. This is the so-called
normal mode splitting or Rabi splitting. Within the classical framework, the main
difference between the two effects sits in the ratio of the frequency detuning to the total
loss rates of the oscillators. This ratio is large for a Fano resonance and close to zero
for a Rabi splitting. The common aspect is the need for coherent coupling between two
oscillators. Without this key ingredient, the bare oscillators simply display Lorentzian
lineshapes around their resonance frequencies.

Interest in Fano resonances and Rabi splittings is so large that a complete list of
references in photonics only is beyond our reach. Nonetheless, we can highlight a few
scenarios where Fano resonances are relevant: sensing [214, 215], switching [216],
directional scattering [208, 217, 218], spontaneous emission [219], lasing [220], and
non-reciprocity [221]. Meanwhile, Rabi splittings have attracted interest for enhancing
or modifying chemical landscapes [222, 223], optical nonlinearities [29], electrical con-
ductivities [224, 225], biological processes [226], lasing [78, 227], and quantum light
emission [36, 37]. Key to progress in all these directions is the correct identification of
Fano resonances and Rabi splittings based on optical measurements. A first challenge
in this endeavor arises because the transmittance (T ), reflectance (R), absorbance (A),
and photoluminescence (PL), of a fixed light-matter system generally display differ-
ent features [228]. In particular, Rabi splittings observed in T , R, A, and PL are in
general all different. The differences can be so large that some observables display a
well-resolved Rabi splitting while other observables display no splitting at all. This
effect has been discussed in the literature [229, 230], and coupled oscillator analogs
can shed some light into its origin [231]. Here, we consider a second challenge in the
identification of Fano resonances and Rabi splittings — one that appears to have never
been considered, yet is highly relevant to experiments. In particular, we ask: Can the
numerical aperture(s) of the measuring instrument artificially generate or obscure Fano
resonances and Rabi splittings? To address this question, we performed experiments
with the simplest and most widely used optical resonator: a Fabry-Pérot cavity. Our
cavity contains a perovskite crystal of contemporary interest, namely CsPbBr3 [125,
232]. Our coupled oscillator system is therefore one that comprises cavity photons and
semiconductor excitons. As we will show, the choice of numerical aperture(s) used to
probe this system conveys a number of surprises and spectral artefacts which can lead
to misleading conclusions when not properly considered.

4.2 Artificially generated Fano lineshape and Rabi split-
ting by a moderately large NA

Figure 4.1(a) illustrates our experimental system: a tunable Fabry-Pérot cavity with
a CsPbBr3 crystal inside. CsPbBr3 crystals were synthesized on a mica substrate
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Figure 4.1: (a) Tunable cavity with a CsPbBr3 crystal inside. The excitation
light is coupled into the cavity through a microscope objective with numerical
aperture NAe and light is collected through a different objective with numerical
aperture NAc. (b) Dark-field microscope image of a typical CsPbBr3 crystal on a
glass substrate. (c) Absorbance and photoluminescence spectra of the CsPbBr3
crystal used for the experiments in Fig. 4.2, Fig. 4.3, and Fig. 4.5. The excitonic
peak in the absorbance spectrum is fitted with a Gaussian distribution centered at
2.397±0.002 eV and a standard deviation of 66 meV. The photoluminescence
is fitted with a Lorentzian lineshape centered at 2.358±0.002 eV and with a
44 meV linewidth.

via chemical vapor deposition [233]. Using thermal release tape, the crystals were
subsequently transferred onto a glass substrate for characterization, or onto a mirror
for experiments. Figure 4.1(b) shows a dark-field image of a typical CsPbBr3 crystal
on a glass substrate. Figure 4.1(c) shows the absorbance and PL spectrum of the
CsPbBr3 crystal used in all our experiments discussed below. The absorbance spectrum
has an excitonic peak at 2.397± 0.002 eV with a 66 meV linewidth, estimated via
the Gaussian fit shown in Fig. 4.1(c) . The PL spectrum is fitted with a Lorentzian
lineshape centered at 2.358±0.002 eV and with 44 meV linewidth. We placed this
crystal in our cavity, which is made by two distributed Bragg reflectors (DBRs) with a
peak reflectance of 99.9% at 530 nm. The position and orientation of one of the cavity
mirrors are controlled with a six degree-of-freedom piezoelectric actuator. The other
mirror, coated with the CsPbBr3 crystal, is mounted on three piezoelectric actuators.
Two of the actuators are used to place the CsPbBr3 crystal along the optical axis; the
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Figure 4.2: (a) Transmittance and (b) photoluminescence spectra of the
CsPbBr3-cavity system. In (a) we vary the excitation numerical aperture
NAe while keeping the collection numerical aperture NAc = 0.4 constant. In
(b) we vary NAc while keeping NAe = 0.25 constant. The cavity length is
L = 3440 nm in (a), and L = 3360 nm in (b).

other actuator serves to finely adjust the cavity length. Using this setup, we measured
the T and PL spectrum as a function of the cavity length. We use an incoherent white
light source for T measurements, and a 405 nm laser for PL measurements. Optical
excitation and collection were achieved through microscope objectives with numerical
aperture as specified for each figure below. We refer to the excitation NA as NAe,
and to the collection NA as NAc. For T measurements, we varied NAe while keeping
NAc = 0.4 constant. For PL measurements, we varied NAc while keeping NAe = 0.25
constant. In the PL case, the choice NAe = 0.25 is not so relevant because the incident
laser is filtered out and we only collect the luminescence. Moreover, the laser power
for all PL measurements is sufficiently low (40 µW at the excitation objective) to avoid
nonlinear effects and crystal degradation.

Figure 4.2(a) shows T spectra of the CsPbBr3-cavity system at a cavity length
L = 3440 nm, for three different NAe. For NAe = 0.1, we observe a nearly-symmetric
resonance peak on a flat background. The same optical resonance acquires a high-
energy tail when NAe increases to 0.25. Then, an asymmetric lineshape resembling
a Fano resonance appears for NAe = 0.4. This lineshape is not the result of Fano
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Figure 4.3: (a)-(c) Transmittance and (d)-(f) photoluminescence spectra of the
CsPbBr3-cavity system as a function of the cavity length. In (a)-(c) we vary
the excitation numerical aperture NAe while keeping the collection numerical
aperture NAc = 0.4 constant. In (a)-(c) we vary NAc while keeping NAe = 0.25
constant. The bright bands in all measurements correspond to cavity resonances
associated with different longitudinal mode numbers. The resonances are
blurred at high energies by the bandgap absorption of CsPbBr3. For reference,
(c) shows empty cavity modes as red dashed lines. Green dashed lines in (a)-(c)
and (d)-(f) indicate the cavity lengths inspected in Fig. 4.2(a) and Fig. 4.2(b),
respectively.

interference. Instead, it is an artefact of the large NAe. As demonstrated ahead, the
asymmetric lineshape is due to the incoherent sum of intensities transmitted through
the cavity at different angles.

Figure 4.2(b) shows PL spectra of the same CsPbBr3-cavity system, for a slightly
different cavity length L = 3360 nm. For NAc = 0.1, we observe two nearly-symmetric
resonance peaks on a flat background. Each of these peaks corresponds to a cavity
resonance. For NAc = 0.25, the peaks acquire a high-energy tail. For NAc = 0.4,
the measured spectrum displays two remarkable features: a feature resembling a
normal mode splitting appears around 2.32 eV, and a Fano-like resonance appears
around 2.18 eV. These spectral features, which only appear for a sufficiently large NAc,
are artefacts. They are due to the incoherent sum of the cavity-enhanced perovskite
emission at different angles. The apparent normal mode splitting in Fig. 4.2(b), around
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2.33 eV, is suspiciously close to the bare exciton energy at 2.397 eV. However, this
proximity is only a coincidence. In order to elucidate the origin of all these artefacts,
we proceed to inspect spectra across a wide range of cavity lengths.

Figure 4.3 shows T and PL spectra as a function of cavity length for the same
configurations considered in Fig. 4.2. For reference, the vertical green dashed lines
in Figs. 4.3(a-c) [respectively, Figs. 4.3(d-f)] indicate the cavity length considered in
Fig. 4.2(a) [respectively, Fig. 4.2(b)]. Each bright band in the color plot corresponds to a
resonance associated with a particular longitudinal mode of the cavity. The longitudinal
modes of the empty cavity are shown as red dashed lines in Fig. 4.3(c). Their resonance
frequency satisfies f = qc/(2L), with q the longitudinal mode number, c the speed of
light, and L the cavity length.

We first analyze the T spectra in Figs. 4.3(a-c). Notice how, as NAe increases, all
resonances broaden in energy. For NAe = 0.4, shown in Fig. 4.3(a), the transmission
from consecutive longitudinal modes nearly overlap. Only a narrow transmission
dip between resonances remains. This is the Fano-like dip observed in Fig. 4.2(a).
The results in Figs. 4.3(a-c) already reveal the origin of the transmission dip: as NAe
increases, transmission bands associated with consecutive q increasingly approach each
other in energy and eventually overlap. As Figs. 4.3(d-f) show, similar behavior arises
in the PL measurements when NAc increases. For NAc = 0.4, shown in Fig. 4.3(d), the
emission from consecutive longitudinal modes nearly overlap in energy. The emission
dip between bands with consecutive q, at fixed cavity length, results in features that
can resemble Fano resonances or mode splittings but are neither.

4.3 Empty cavity transmittance measurements and
transfer matrix calculations

Our measurements clearly demonstrate that even a moderately large NA can generate
spectral features reminiscent of coherently coupled systems. Two important questions
remain. First, are these spectral features due to the presence of an excitonic material
in our cavity? Second, are interference effects responsible for these spectral features
in any way? In the following, we will demonstrate that the answer to both of these
questions is negative. We will analyze T spectra for an empty Fabry-Pérot cavity, in
experiments and theory. While this analysis is necessarily restricted to T (there is no
PL in an empty cavity), the insights obtained from it are general.

Figure 4.4(a) shows experimental T spectra for the same three NAe considered in
Fig. 4.2 and Fig. 4.3, and at a cavity length L = 3430 nm. As NAe increases, we again
observe a broadening of the resonance and the emergence of a Fano-like lineshape.
This demonstrates how increasing NAe generates a Fano-like lineshape even in the
absence of an excitonic material. To identify the mechanism underlying this effect,
we use a transfer matrix model to calculate the transmission of an empty cavity. Our
goal is to determine whether the incoherent sum of transmitted intensities over a finite
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Figure 4.4: (a) Experimental transmittance spectra of an empty cavity for
three different NAe. (b) Transfer matrix calculations of transmittance spectra
averaged over an angular range corresponding to the experimental NAe. The
averaged transmittance is given by the incoherent sum of transmitted intensities
at different angles, divided by the incident intensity over the same angular
range. The cavity length is L = 3430 nm in both experiments and calculations.

angular range can lead to Fano-like lineshapes.
Our transfer matrix calculations are done for a DBR-vacuum-DBR cavity. We

model each DBR as a stack of 6 pairs of layers with refractive indices n1 = 1.45 and
n2 = 2.3. These refractive index values correspond, within the frequency range of
interest, to our experimental DBRs made of silica and Ta2O5. While the experimental
DBR has 9 pairs of layers, we implemented 6 pairs in the calculations to avoid dealing
with unnecessarily small linewidths and long computation times. This change does
not affect any of the results presented in this chapter, since the spectral lineshapes we
will show have linewidths that are dominated by the angular ranges over which the
transmitted intensities are averaged.

We calculate the transmittance (i.e., transmitted power normalized to the incident
power) when the cavity is illuminated by a single plane wave, and we vary the angle
of incidence in steps of 0.005 degrees. Then, we average the transmittance over the
angular range corresponding to the NAe of interest. We also sum the contributions of
the two orthogonal polarizations, in correspondence to our experiments which were
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done using unpolarized light.
Figure 4.4(b) shows transfer matrix calculations results obtained as described above,

for the same cavity length considered in Fig. 4.4(a). Notice how the experimentally-
observed Fano-like lineshapes are reproduced in the calculations. This demonstrates
that the sum of transmitted intensities at different incident angles suffices to generate
Fano-like lineshapes. Since we are adding intensities and not field amplitudes, we are
neglecting interference effects due to different plane waves. Hence, by reproducing the
experimentally-observed lineshapes in this way, we can conclude that the measured
lineshapes are not due to Fano interference. We therefore call these Fano-like lineshapes
“artefacts”. While our calculations qualitatively reproduce the experimental lineshapes
very well, the value of T is much lower in experiments. We attribute this difference to
an imperfect alignment of the cavity mirrors, which leads to very significant optical
losses through the sides of the cavity. Scattering losses may also reduce the value of T
in experiments, but we suspect this contribution is smaller given the uncertainty we
have in the angular alignment (∼ 5 millidegrees).

4.4 Obscured Rabi splitting by a moderately large NA

Having shown that using a moderately large NA can generate spectral lineshapes
resembling those characterizing coherently coupled systems, we turn our attention
to the complementary question: Can the NA obscure spectral features of bona fide
coherently coupled systems? To answer this question, we inspect T and PL spectra of
our perovskite-cavity system for shorter cavity lengths than considered in Fig. 4.2 and
Fig. 4.3. Figures 4.5(a-c) show measurements in a parameter range where the q = 7
cavity mode crosses the exciton energy. The energies of the bare cavity mode and
exciton are shown as dashed black lines in all panels in Fig. 4.5.

Let us first consider the results for the smallest NAe shown in Fig. 4.5(c). Notice
how, as the cavity length decreases, the resonance peak bends away from the empty
cavity mode and does not cross the exciton energy (2.397 eV). This anti-crossing
behavior is characteristic of strong coupling. A simple and intuitive way to estimate the
coupling regime (weak vs strong) of our system is by fitting the measured resonances
with the eigenvalues of a 2× 2 Hamiltonian describing our exciton-photon coupled
system. The diagonal terms of the Hamiltonian contain the exciton and cavity photon
energies. We know the bare exciton energy from A measurements in Fig. 4.1(c), and
the bare cavity photon energy from the relation f = qc/(2L). The off-diagonal term
of the Hamiltonian, i.e., the coupling strength, is the only fit parameter in our model.
By fitting the low-energy eigenvalue of the Hamiltonian to the resonance observed in
the Fig. 4.5(c) measurements we estimate a Rabi splitting of 150 meV. This value is
well above the sum of the exciton and cavity photon linewidths, which are 66 meV and
0.5 meV, respectively. Therefore, our exciton-photon system is in the strong coupling
regime and the observed resonances correspond to exciton-polaritons. This is not a
surprising result. Indeed, strong exciton-photon coupling was recently shown in similar
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Figure 4.5: (a)-(b) Transmittance and (c)-(d) photoluminescence spectra of the
CsPbBr3-cavity system as a function of the cavity length, for a shorter cavity
than in Fig. 4.2 and Fig. 4.3. The horizontal dashed black line indicates the
exciton energy, and the tilted dashed black line indicates the energy of the
q = 7 longitudinal cavity mode. The green dashed lines in all panel are the
eigenvalues of a 2×2 Hamiltonian representing the exciton-photon coupled
system. The coupling constant is the only fit parameter, and the result is
shown in (c) and (f) for transmittance and photoluminescence measurements,
respectively. The coupling was not changed for measurements with different
NA.

Fabry-Pérot cavities filled with the same perovskite semiconductor. [125, 232]. The
interesting new observation, enabled by our tunable cavity system, is that the polariton
band is so broadened for NAe = 0.4 that its central energy appears to coincide with the
bare cavity mode. Measuring spectra with a single moderately large NAe only, as done
in many works, can lead to the erroneous conclusion that there is no strong coupling.
The same holds for the PL measurements shown in Figs. 4.5(d-f). These results clearly
demonstrate how a moderately large NA can obscure the spectral signature of a bona
fide strongly coupled system.

The measurements in Fig. 4.5 display features which require clarification. First,
the Rabi splitting observed in PL (112 meV) is smaller than the one observed in T
(150 meV). This is consistent with previous calculations [228] and many experimental
observations of polariton systems [229]. Second, the upper polariton is not visible in
Fig. 4.5 because of above-bandgap absorption. This can be understood in light of the
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Figure 4.6: Transmittance, calculated using the transfer matrix method, for a
tunable cavity containing a layer representing (a) CsPbBr3, or (b) a material
with optical response determined by a single Lorentzian oscillator with the
same frequency, line width, and oscillator strength, as the exciton in CsPbBr3.
The frequency-dependent complex refractive indices of both systems are shown
in Appendix 4.6.1. Green and black dashed lines are exactly the same as in
Fig. 4.5. The Rabi splitting obtained empirically from the upper-lower polariton
splitting in (b) is equal to the one deduced from fitting to the lower polariton in
Fig. 4.5(c).

absorbance measurements in Fig. 4.1(c). There one can see that absorbance is much
greater at energies above the exciton energy, where the upper polariton may be expected
but the bandgap absorption sets in. Indeed, previous works reporting exciton-polaritons
in optical cavities filled with the same perovskite semiconductor also did not observe
the upper polariton [26]. The energy splitting between upper and lower polaritons at
zero detuning (i.e., the Rabi splitting) is the usual indicator of strong coupling. Since
the upper polariton is absent in our data, the accuracy of the coupling constant we
determined by fitting to the lower polariton only could be doubtful. We would now
like to dissipate this doubt by calculating transmittance spectra as a function of the
cavity length for two systems at normal incidence. The calculations are done using
the transfer matrix method, and details are provided in Appendix 4.6.1. System I is a
cavity with CsPbBr3, as in our experiments. The complex refractive index of CsPbBr3
was obtained by applying the Beer-Lambert law to our experimental absorbance data
in Fig. 4.1, and then using the Kramers-Kronig relations. This leads to refractive index
values that are consistent with previous ones obtained via ellipsometry measurements of
CsPbBr3 crystals similar to ours. System II is the same cavity, with CsPbBr3 replaced
by a hypothetical material with a single Lorentzian oscillator response. The frequency,
linewidth, and amplitude of that oscillator were chosen such that the resultant complex
refractive index matches the one of CsPbBr3 at low energies, where the excitonic
response dominates over the bandgap absorption. Comparing these two systems is
fair because strong coupling is determined by the excitonic frequency, linewidth, and
oscillator strength, and we are keeping these quantities constant. In Appendix 4.6.1 we
show the frequency-dependent complex refractive indices of both systems.
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Figure 4.6 shows calculation results for systems I and II as described above. Fig-
ure 4.6(a) reproduces our experimental observations from Fig. 4.5(c), where the upper
polariton is absent. The upper polariton reveals itself when the above-bandgap absorp-
tion is removed and the excitonic response is retained, as Fig. 4.6(b) shows. More
importantly, notice that the lower polariton dispersion is practically the same in the
two systems. For reference, we superimposed (not fitted) the Hamiltonian eigenvalues
from Fig. 4.5(c) on Fig. 4.6. Notice the excellent agreement between the eigenvalues
and the lower polariton energies in both transfer matrix calculations. Moreover, the
coupling constant obtained from the fitting (150 meV) exactly reproduces the Rabi
splitting which can be empirically (i.e., without any fitting) determined in Fig. 4.6(b).
This demonstrates the accuracy of the coupling constant deduced from the fitting.

4.5 Conclusion

In conclusion, we have shown that a moderately large numerical aperture can artificially
generate and obscure spectral features associated with coherently coupled systems. In
particular, we have seen Fano-like resonances and apparent normal mode splittings
entirely due to the incoherent sum of transmitted intensities at different angles collected
by the NA. Moreover, we have seen how the spectral signature of bona fide strongly
coupled system, the Rabi splitting, can be obscured in measurements with a large NA.
While these results were obtained using a tunable Fabry-Pérot cavity, we believe that
the spectral artefacts we report can also be found in other dispersive nanophotonic
systems of contemporary interest, such as plasmonic gratings and metasurfaces. In
general, Fano-like lineshapes can be artificially generated whenever the resonance
frequency of an optical mode is not constant across the angular range of the measure-
ment. Meanwhile, spectral features resembling normal mode splittings can emerge
whenever the frequency separation between two (orthogonal) modes is smaller than
the apparent linewidths which are artificially broadenend by the numerical aperture.
These spectral artefacts can be avoided by measuring with the smallest possible NA,
such that the resonance frequency is constant over the limited angular range of the
NA. Alternatively, angle-resolved measurements can also avoid pitfalls. We recognize
that these recommendations may be difficult to implement when measuring the trans-
mission of small samples, as often the case in nanophotonics research. In that case,
a full energy-angle-resolved theoretical study reproducing the measured lineshapes
with good accuracy seems to be the only way to assess the true nature of Fano-like
lineshapes and Rabi-like splittings. In any case, the mere experimental observation of
spectral lineshapes resembling Fano resonances or normal mode splittings cannot by
itself be taken as solid evidence of coherent optical phenomena.
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4.6 Appendices

4.6.1 Details on transfer matrix calculation
Here we provide details on the transfer matrix calculations presented in Fig. 4.6. The
calculations involve a Fabry-Pérot cavity made by two distributed Bragg reflectors
(DBRs). As in the experiments, each DBR in the calculations consists of 9 pairs
of layers with refractive indices n1 = 1.45 and n2 = 2.3, corresponding to silica and
tantalum pentoxide in the frequency range of interest. The thicknesses of the layers
with n1 = 1.45 and n2 = 2.3 are 91 nm and 58 nm, respectively. The resultant DBR
has a photonic stop-band centered at λ = 530 nm.
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Figure 4.7: (a) Refractive indices n, and (b) extinction coefficients κ , used for
the transfer matrix calculations giving the results in Fig. 4.6. Black solid lines
correspond to the CsPbBr3 crystal, i.e., System I. Green dashed lines correspond
to the hypothetical material with n and κ fixed by a single Lorentzian oscillator,
i.e., System II.

Figure 4.6(a) shows results when the cavity contains a material with refractive
index n and extinction coefficient κ corresponding to the one of CsPbBr3; we call this
System I. The value of κ was derived from our absorbance measurement [Fig. 4.1(c)].
Using this value, the index n was calculated via the Kramers-Kronig relations. We
added a background index of 0.68, in agreement with previously reported ellipsometric
data for the same material (see Ref. [234]). The thickness of the crystal used in the
calculation is 150±30 nm, which agrees with our profilometer measurement.

Figure 4.6(b) shows results when the cavity contains a hypothetical material with
n and κ fixed by a single Lorentzian oscillator, instead of the CsPbBr3 layer; we call
this System II. The frequency, linewidth, and amplitude of that oscillator were chosen
such that the resultant n and κ match the one of CsPbBr3 at low energies, where the
excitonic response dominates over the bandgap absorption. The layer thickness is also
150 nm. Figure 4.7 shows the values of n and κ used to produce the results in Fig. 4.6
for Systems I and II.
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Chapter 5

Open access tunable cavity in a
closed-cycle cryostat

In this chapter we describe the construction and characterization of a tunable
cavity setup in a closed-cycle cryostat, as well as the utilization of this setup
for probing the nonlinear optical response of a CsPbBr3 perovskite semicon-
ductor. The characterization we perform focuses on the mechanical stability
of the cavity, and it is done by measuring the transmitted intensity of a
laser. Our results reveal that, due to the influence of mechanical fluctuations,
the setup can currently be used for meaningful cavity experiments only if
the cryo-cooler is OFF, or if the cryo-cooler is ON but the measurement is
performed fast enough to avoid the effects of slow mechanical fluctuations.
Using the latter approach, we discover a highly nonlinear response in a
plano-concave cavity containing a CsPbBr3 perovskite crystal. This strong
nonlinearity is evidenced by the first observation of optical bistability in any
perovskite system.
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5.1 Introduction

Over the past decades, there have been many efforts in the physics community to
realize solid-state optical cavities with strong Kerr-type nonlinearity [127, 235, 236].
Such highly nonlinear cavities are desired for fundamental physics research as well
as technological applications. For instance, a single-mode cavity with single-photon
nonlinearity could convert classical laser light into anti-bunched light via the photon
blockade effect [36, 37]. Moreover, arrays of highly-nonlinear cavities could be used to
simulate strongly-correlated states of quantum systems, and to solve hard optimization
problems programmed in the interactions between cavities [41, 42, 67, 68].

As discussed in Chapter 1, one approach to realize a strong Kerr-type nonlinearity
is by leveraging polariton-polariton interactions in semiconductor cavities. While there
has been impressive progress in this direction with III-V and II-VI semiconductor
cavities [22, 27, 237–241], a single-photon nonlinearity (single-particle interaction
energy commensurate with resonance linewidth) under continuous-wave laser illumi-
nation has never been realized. Very recently, there was an impressive demonstration
of single-photon nonlinearity with room-temperature organic polaritons under pulsed
excitation [128]. However, single-photon nonlinearity in the technologically-relevant
continuous-wave driving regime has never been realized.

Important challenges to address in this context are the weak nonlinear response
of most commonly used excitonic materials [242, 243], as well as the difficulty in
integrating new materials with standard cavity architectures. In view of these challenges,
many groups (including us) have been investigating open-access tunable cavity systems.
These open-access cavities can easily incorporate new materials which are promising
to realize strong nonlinearities. In this vein, we have identified cuprous oxide and
CsPbBr3 perovskite semiconductors as two promising candidates for realizing highly
nonlinear regimes. Both materials have been reported to possess Rydberg excitons
at cryogenic temperatures [204, 244]. With the perspective of incorporating these
materials in our cavity and probing them at low temperatures, we constructed a new
tunable-cavity system operating in a closed-cycle cryostat.

Up to date, two types of cryostats have been widely used for tunable cavity setups:
Helium bath [18, 81] and closed-cycle cryostat [91, 245]. We chose a closed-cycle
cryostat because it does not require constantly buying Helium, which is an advantage
in view of the current worldwide Helium shortage. However, conventional closed-cycle
cryostats have the disadvantage that the periodic compressing motion of the Helium
cycle exerts strong mechanical vibrations which compromise the stability of the cavity.
Moreover, closed-cycle cryostats typically have small sample space volumes. This is
not a problem for small monolithic photonic samples made via nanolithography with
probing optics placed outside of the cryostat. But in our case, an ample sample space
is compulsory to host cavity mirrors and the mounting piezoelectric stages. Thanks
to a growing need to tackle these issues and recent technical developments, a novel
closed-cycle cryostat was brought to market a few years ago by Montana instruments.
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Figure 5.1: 3D illustration of our tunable cavity setup inside a novel closed-
cycle cryostat. The vacuum lid and the cold shield are half-cut to give an inside
view of the setup. The scale bar is 10 cm.

We developed our cryogenic tunable cavity setup based on that cryostat.

Figure 5.1 shows a 3D illustration of our cryogenic optical setup. The big black
box is the cryostat featuring a big inner space equipped with a floating platform for
active mechanical damping to suppress environmental noises. On top of the platform
we mount two stacks of piezoelectric actuators for displacing and aligning cavity
mirrors, microscope objectives for coupling light into and out of the cavity, custom-
made actuators for the objectives, and a customized cold shield. All these parts are
discussed in more detail in the next section. Although the floating platform provides a
stable foundation for our tunable cavity architecture, the final cavity stability is also
determined by the stability of the piezo stacks and the mirror mount design. Therefore,
we conducted a series of optical measurements to characterize the mechanical stability
of our cavity setup. The results of this characterization are the main part of this chapter.
Finally, we will also present transmittance measurements obtained in a CsPbBr3-cavity
system at cryogenic temperature, and report the first observation of optical bistability
in any semiconductor perovskite system.
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Figure 5.2: (a) Top-view photograph of the setup we built for probing the
optical response of a tunable cavity in a closed-cycle cryostat (see text for
details). The lid of the cold shield was removed for showing the cold space. (b)
Inclined and close-up view photograph of the cold space in the cryostat. The
cold shield was removed for illustration purposes.

5.2 Open-access tunable cavity in a closed-cycle cryo-
stat

At the heart of our low-temperature optical experiment is a Gifford-McMahon two-
stage closed-cycle cryostat. The cryostat is named HILA, standing for High Inertia Low
Acceleration. It is manufactured by Montana Instruments for applications demanding
high mechanical stability. Our group acquired the first HILA in Europe, and one
of the first HILAs in the world. Figure 5.2(a) shows a photo of the HILA vacuum
chamber. The most distinctive feature of the HILA is its large floating platform. This
platform is a disk with 25 cm diameter, providing ample space for mounting our
experiment. The platform floats on three electromagnetic springs evenly distributed
along the perimeter, continuously actuating the platform’s levelling position. As a
result, mechanical vibrations from the environment can be effectively damped. The
platform is also designed to have a large mass. Thanks to the active damping and high
inertia of the platform, the mechanical stability is designed to be significantly better
than in conventional cryostats.

The HILA platform has three parts: a cold space, a cold ring, and a peripheral ring.
The peripheral ring is indicated in Fig. 5.2(a), while the cold space and cold ring are
indicated in the closed-up view in Fig. 5.2(b). The cold space is the golden central
area, which has a 14 cm diameter. The base of the cold space is thermally connected
to a cold finger, and reaches a temperature of 5 K at maximum cooling power. Next
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to, and thermally separated from, the cold space is the cold ring. On top of the cold
ring there is a metallic cold shield, which serves to isolate the cold space from external
thermal radiation. The lid of the cold shield is removed in Fig. 5.2(a) for showing
the cold space. The cold ring and the cold shield stay at 30 K when the base of the
cold space reaches 5 K. We designed the cold shield, which was manufactured by
Montana Instruments, in order to have two cylindrical inlets each accommodating a
microscope objective. Glass windows are glued (using thermal grease and GE varnish)
at the ends of the inlets to minimize heat transfer to the cold space while retaining
optical access. In this way, we can measure the transmission through our cold sample
using standard microscope objectives, i.e., usable at ambient temperature and pressure.
The remainder of the platform is the peripheral ring. This area is thermally separated
from the cryogenic area and no cryo-cooling power is delivered there. The peripheral
ring supports our custom-made mechanical actuators for controlling the alignment and
position of the two microscope objectives. All mechanical parts for these actuators
were designed and manufactured at AMOLF, except the piezoelectric actuators for
controlling the focus of the objective which were purchased from Newport. Finally, the
peripheral ring also supports extra weights which compensate for the unbalanced mass
distribution due to the objectives and their mechanical actuators.

Figure 5.2(b) shows two stacks of four piezoelectric actuators. These are open-loop
stick-slip piezoelectric positioners. Each stack has three linear translation stages (xyz)
on the bottom, and one rotary stage (either tip or tilt) on top. Custom-made mirror
mounts made of copper are directly bolted on the rotary stages. The cavity mirrors
are directly glued on the copper mounts with thermal grease and GE varnish. The two
piezo stacks stand on two custom-made golden pedestals, which elevate the center
of the mirrors to the optical axis passing through the center of the HILA windows.
Cooling power is delivered from the base of the cold space to the mirror mounts via
flex links, as indicated in Fig. 5.2(b), manufactured by Montana Instruments. The piezo
stacks are connected to an external control unit via electrical wires through the sockets
integrated in the base. All electrical wires entering the cold space are thermally lagged
in the cold ring for minimizing thermal disturbances.

We follow three main steps to prepare our tunable cavity in a closed-cycle cryostat
for an optical experiment: coarse cavity alignment, vacuum pumping, and cryo-cooling.
A coarse cavity alignment is necessary at room temperature because the travel range of
the actuators is limited at low temperature; this is due to the decreased flexibility of
the flex link at low temperatures. Additionally, at room temperature the cavity mirrors
can be directly seen and this facilitates the alignment process. The cavity mirrors
are aligned parallel to each other by tuning the tip and tilt angles while inspecting
Fabry-Pérot fringes under narrowband LED illumination; larger fringes correspond
to more parallel mirrors. Once the cavity is coarsely aligned, we seal the chamber
and pump the vacuum. A cascade of a roughing pump and a turbo pump is used for
this purpose, providing a 10−4 mbar vacuum at room temperature. Besides, a cryotrap
is integrated in the cryostat to further pump the vacuum to 10−7 mbar at cryogenic
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temperatures. The final step is the cryo-cooling. Due to the large area of the cold space
and the thermal load in our experiments, it takes ∼ 16 hours for the base plate of the
cold space to reach the lowest temperature.

5.3 Characterization of the cavity mechanical stability

5.3.1 Approach
We devised and implemented an optical method to characterize the mechanical stability
of our cryogenic cavity system. Figure 5.3(a) shows the setup we built for this purpose.
The main idea is to measure changes in the cavity length by monitoring the intensity
of a laser Ic transmitted through the cavity. The cavity used in the measurement is
made of two planar distributed Bragg reflectors (DBRs), whose layering parameters
are the same as those in Chapter 4 [see Appendix 4.6.1]. We also measure a reference
intensity Ir. By analyzing the ratio Ic/Ir instead of just Ic, we avoid ascribing intensity
fluctuations from the laser to cavity length fluctuations.

Our experimental protocol is as follows. First, for calibration purposes, we mea-
sure Ic/Ir as a function of time while scanning the cavity length at a constant speed.
Figure 5.3(b) show a typical result. The time axis has been converted to a cavity length
variation using the distance between two consecutive optical modes as a ruler. The
cavity resonances in Fig. 5.3(b) are broad because we used a HeNe laser emitting at
632 nm. Since this wavelength is outside the stopband of the DBRs comprising our
cavity [see Fig. 5.3(c)], the DBRs make a very poor cavity. This allows us to measure
cavity length variations across a wide dynamic range of ±30 nm. Had we used a laser
with emission wavelength within the DBR stopband, the dynamic range would be
limited to ∼ 0.1 nm by the narrow resonance linewidths in that spectral range.

In Fig. 5.3(b) we highlight with a red line the left side of the first resonance, where
Ic/Ir ∼ 1. On this slope, the transmitted intensity is linearly proportional to the cavity
length; this is the regime in which we want to operate. Therefore, we park the cavity
length at the center of this linear region, and then record long time traces of Ic and
Ir using a sampling rate of 2.5 M/s. Finally, using these time traces and the relation
between Ic and the change in cavity length ∆L, we assess the fluctuations in the cavity
length as shown in the next subsection.

Beyond the laser noise whose effects we suppress via the reference measurement,
our method is also affected by detection noise. In order to quantify the detection noise,
we performed a control experiment with the laser passing through our entire setup
except the cavity. In this way, we found that intrinsic/detection noise in the system
results in apparent Gaussian fluctuations in ∆L with standard deviation 0.16 nm. This
0.16 nm can be regarded as the noise added by our entire detection system, and/or as a
detection threshold. It is the smallest instantaneous change (given our sampling rate) in
cavity length we can reliably detect. The detection threshold can be increased by using
a laser wavelength at which the DBRs have larger reflectance, thus resulting in larger
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Figure 5.3: (a) Schematic of the optical setup we built for characterizing the
stability of our tunable cavity. (b) For a linear ramp of the cavity length, we
plot the intensity transmitted through the cavity Ic divided by the reference
intensity Ir, as a function of the change in cavity length. The red line highlights
a region where Ic/Ir is approximately linear with the cavity length. This is the
regime in which the results presented in Fig. 5.4 and Fig. 5.5 were obtained. (c)
Transmittance spectrum of the distributed Bragg reflectors making our cavity.
The wavelength of the HeNe laser used for the measurements in (b) is indicated
by the red dashed line.

sensitivity (intensity change per displacement). However, this is not necessary for our
system because typical fluctuations in our cavity turn out to be much greater than the
detection threshold.

5.3.2 Results

We characterized the mechanical stability of our empty cavity in two situations: cryo-
cooler OFF and cryo-cooler ON. Figure 5.4 summarizes the results when the cryo-
cooler is off. Figure 5.4(a) shows the change in cavity length ∆L during a 5 s mea-
surement. Figure 5.4(b) shows a 50 ms section of that time trace, indicated by red
dashed lines in Fig. 5.4(a). In this shorter time window, we observe several oscil-
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Figure 5.4: Experimental characterization of the tunable cavity stability when
the cryo-cooler is off. (a) Cavity length fluctuation (∆L) as a function of time.
(b) Zoom in the red dashed rectangle in (a). (c) Power spectral density of ∆L,
and (d) probability density function of ∆L, both calculated using the data in (a).
The red curve in (d) is a Gaussian distribution fitted to the data, from which we
extract a standard deviation of 0.3 nm.

lations. Figure 5.4(c) shows the power spectral density (PSD) of ∆L, obtained by
Fourier transforming the data in Fig. 5.4(a). The PSD reveals three clear peaks at
200 Hz, 276 Hz and 456 Hz, which correspond to the oscillations observed in the time
domain. We believe that these oscillations correspond to mechanical vibrations of
certain components of the cavity architecture.

The cavity architecture consists of three main mechanical parts: floating platform,
piezo stacks, and mirror mounts. First, the floating platform can be ruled out due to its
low resonance frequency (∼ 0.5 Hz). Second, the mirror mounts alone are unlikely to
give rise to oscillations at hundreds of Hz. They are monolithic and firmly bolted on
the rotary stages. Besides, the mirror mounts are made of copper and are small. The
combination of the high Young’s modulus of copper and small dimensions is unlikely
to result in structural vibrations at hundreds of Hz. Thus, we think that the piezo stacks
are most likely responsible for the observed oscillations and peaks in the PSD. The
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piezo stages are based on the stick-slip mechanism and their mechanical structures
are not rigid. Moreover, the many-stage stacking can also explain the presence of
multiple resonance frequencies. In addition, the design of the mirror mounts employs a
cantilever structure to physically separate the two stacks and thereby avoid blocking
optical access to the cavity. This design causes a non-normal loading of the mirror
mounts on the rotary stages, potentially making the stacks more susceptible to external
driving forces and a greater torque.

In Fig. 5.4(d), above 456 Hz, the PSD shows a decay towards a flat plateau starting
at 2 kHz. This corresponds to the noise floor of our measurement as extracted from the
control experiment. On top of this decaying trend, a small peak at 1 kHz followed by
a series of bumps between 1 kHz and 2 kHz are observed. The exact origin of these
peaks is unclear.

Finally, to characterize the strength of the cavity length fluctuations, we plot a
probability density function (PDF) of ∆L as shown in Fig. 5.4(d). A Gaussian is fitted
to the PDF, from which we extract a standard deviation of 0.3 nm for ∆L. Note that the
detection noise of the experimental system partly contributes to this number. Assuming
that the two Gaussian processes are independent and additive, we conclude a standard
deviation of 0.25 nm for the real cavity length fluctuation when the cryo-cooler is off.

Figure 5.5 presents a similar analysis to the one in Fig. 5.4, but for the cryo-cooler
ON situation. Figure 5.5(a) shows a 5 s time trace of ∆L, where we observe periodic
pulses at 1.4 Hz. These pulses are caused by the mechanical motion of the cryo-cooler.
Within each period, one high-amplitude and a few low-amplitude pulses are present.
Figure 5.5(b) shows a 50 ms time section within the high-amplitude region indicated in
Fig. 5.5(a). Surprisingly, we observe a nearly perfect sinusoidal modulation at 200 Hz
and with a 20 nm amplitude. This suggests that the 200 Hz noise component previously
observed in Fig. 5.4(d) is the dominant one for the entire cavity system. Figure 5.5(c)
illustrates a 50 ms time section of the low-amplitude region indicated in Fig. 5.5(a).
The low-amplitude regions are the time sections between the pulses of the cryo-cooler
motion. In that time range we can observe a complex waveform comprising several
frequency components, and an amplitude bounded within ±5 nm.

Figure 5.5(d) shows the PSD based on the data in Fig. 5.5(a). As in the cryo-cooler
OFF situation, the PSD reaches the noise floor above 2 kHz. Consistent with our
observation in Fig. 5.5(a), we observe a strong peak at 200 Hz in the PSD. The peaks
at 400 Hz and 276 Hz previously observed also show up. Another peak at 1.4 Hz can
also be observed, corresponding to the low-frequency pulsed periodic modulation. We
highlight the peaks at 200 Hz and 1.4 Hz in Fig. 5.5(d) as they are the strongest when
the cryo-cooler is on. Finally, we build a PDF for the cavity length fluctuation as shown
in Fig. 5.5(e). The PDF has a standard deviation of 6.4 nm. The contribution from
the detection noise is much smaller than 6.4 nm and can be effectively neglected. In
contrast to Fig. 5.4(d), the data with the cryo-cooler ON is not well fitted by a Gaussian
distribution [red curve in Fig. 5.5(e)]. This is not surprising because the cavity is not
influenced by white noise in the presence of the strong pulsed motion of the cryo-cooler.
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Figure 5.5: Experimental characterization of the tunable cavity stability when
the cryo-cooler is on. Everything is the same as in Fig. 5.4, except that we
present two zoom-in views in (b,c) of the data in (a) instead of just one. We
include the Gaussian fit in (e) for reference, even though the experimental
distribution clearly deviates from a Gaussian due to the presence of colored
noise.
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Based on the above analysis, we conclude that the cryo-cooler has a dramatic influence
on the cavity setup, reducing the cavity stability by a factor of 40.

The results above suggest that a better design is needed to improve the mechanical
stability of our cavity. This is particularly important for measurements lasting more
than a second since the pulse of the cryo-cooler leads to major fluctuations in cavity
length. An improved design, while very much necessary, is unfortunately beyond the
scope of this thesis due to time constraints. Our group will pursue such a design in
the future. In the following, we focus on assessing the performance of our system
in the type of optical experiments for which we build it. In particular, we perform
transmittance measurements under white light and laser excitation.

5.3.3 Transmittance measurement of a CsPbBr3-cavity system at
cryogenic temperature

In this section we present white light transmittance measurements through our tunable
cavity containing a CsPbBr3 crystal. This is the same system studied in Chapter 4.
We perform experiments with the cryo-cooler ON and OFF. In the latter case, we
measure the transmittance immediately after switching off the cryo-cooler in order
to have approximately the same temperature as with the cryo-cooler ON situation.
The purpose of these measurements was two-fold. First, we wanted to test a newly
developed measurement automation system involving one of our piezoelectric linear
translation stages, a home-built software, and a spectrometer. Second, we wanted to
see the effect of cavity length fluctuations on the transmittance.
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Figure 5.6: Transmittance spectra of our plano-concave tunable cavity in a
closed-cycle cryostat containing a CsPbBr3 crystal, as described in the text.
Spectra are plotted as a function of the cavity length, with the zero value being
arbitrary. The cryo-cooler is on for the measurements in (a), and off in (b).

The cavity used in this experiment consists of a planar DBR coated with CsPbBr3
crystals and a concave DBR with 12 µm radius of curvature. Both DBRs have the
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same transmittance profile as shown in Fig. 5.3(c). Figure 5.6(a) and Fig. 5.6(b) show
measured transmittance spectra for the cryo-coolor ON and OFF, respectively, as a
function of the cavity length. An integration time of 100 ms is used for each spectrum.
The cavity length is scanned by applying a voltage to one of our linear translation
piezoelectric actuators. The applied voltage is converted to a piezo position by scanning
over two longitudinal cavity modes and using their separation as a reference distance.

Figures 5.6(a,b) cover the same cavity length range, containing a full series of
transverse modes of the same longitudinal number and the start of the next longitudinal
mode series. Clearly, the optical resonances in Fig. 5.6(a) are blurred by the vibrations
introduced by the cryo-cooler. The counterpart measurement in Fig. 5.6(b) demonstrates
a good cavity stability when the cryo-cooler is off. We also observe fine splittings of
all optical resonances, due to the ellipticity of the concave mirror. Despite the different
linewidths of the resonances in Figs. 5.6(a,b), all resonances bend towards a constant
energy without crossing it when reducing the piezo position. This avoided-crossing
is characteristic of strong light-matter coupling. Moreover, the apparent discontinuity
of each resonance (dotted-like curves) in Fig. 5.6(b) is due to a relatively large step in
scanning the cavity length. In this measurement, we used a step of 150 mV to scan
the piezo voltage; this corresponds to a 3 nm step for the cavity length, approximately.
The minimum step specified by the hardware is 1.5 mV, so there is plenty of room
to improve the data quality. However, we also note that linear drifts (∼ 5 nm/s) or
sudden stepwise changes (∼ 5 nm) of the cavity length occasionally occur during the
automated spectrum acquisitions in the cryo-cooler OFF situation. This is because
when the cryo-cooler is switched off the base temperature of the cold space will rapidly
rise, resulting in a thermal strain change in the piezo stacks. In this regard, a trade-off
between using a smaller scan step and reducing total measurement time should be
carefully considered.

5.4 Optical bistability in a cavity with CsPbBr3 at cryo-
genic temperature

Finally, we present preliminary results on nonlinear dynamics of light in a CsPbBr3-
cavity system at 5 K. We use a plano-concave cavity consisting of a planar DBR
with CsPbBr3 crystals on it and a concave DBR with 25 µm radius of curvature.
We measured the transmitted intensity of a 532 nm laser through the cavity while
modulating the cavity length, similar to our experiments with olive oil in Chapter 2. The
cavity length was modulated via controlling the piezo voltage. As the piezo controller
does not have a direct analog port to feed a modulation signal, the piezo voltage was
modulated with a home-built software that allows us to specify the frequency and the
amplitude. In our measurement, we used a 130 Hz triangular waveform scanning across
several cavity modes. Since the frequency difference between consecutive transverse
modes is much larger than the resonance linewidths due to the lateral confinement of
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the concave DBR, we can effectively probe single modes in narrow ranges within the
scan. This is true even in the nonlinear regime, as long as the laser power is not so large
that it induces a resonance frequency shift that is commensurate with the frequency
difference between consecutive resonances.
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Figure 5.7: Transmitted intensity of a 532 nm laser through the same CsPbBr3-
cavity system considered in Fig. 5.6 while scanning the cavity length. Data
is presented for three powers P of the incident laser .The cavity length has
been converted to ∆/Γ, i.e., laser-cavity detuning divided by the loss rate of the
optical mode, using the linewidth at the lowest power. Green solid and black
dashed curves correspond to forward and backward scans of the cavity length,
respectively, as indicated by the arrows. For clarity, data for P = 100 µW
and P = 10 µW are multiplied by a factor of 3 and 10, respectively; data
for P = 100 µW and P = 1 mW are displaced vertically. The measurements
evidence the emergence of optical hysteresis and bistability as the laser power
increases.

Figure 5.7 shows the transmitted intensity through the CsPbBr3-cavity system as
a function of detuning ∆ in units of the linewidth Γ. Data is presented for three input
powers. All curves are averaged over 80 cycles, and data for the two largest powers
are vertically displaced for clarity. For ease of comparison, data for P = 100 µW and
P = 10 µW are multiplied by a factor of 3 and 10, respectively. Green solid and black
dashed curves correspond to forward and backward scans, respectively. For a low power
of P = 10 µW, the transmission shows a linear Lorentzian profile. The Lorentzian
linewidth of this measurement is used to calibrate the horizontal axis of Fig. 5.7 in units
of Γ. For a medium power of P = 100 µW, we observe a tilted resonance lineshape
towards positive detuning and a small hysteresis area around ∆/Γ = 0.8. While the
system is not in the bistable regime yet for this power (albeit it is very close), the
observed optical hysteresis evidences the presence of optical nonlinearity. For a higher
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power of P = 1 mW, optical bistability manifests as a strong tilting of the resonance
lineshape and a large hysteresis area. As mentioned in the introduction of this chapter,
many nonlinear phenomena on perovskite cavities have been observed under pulsed
excitation. To the best of our knowledge, this is the first observation of optical bistability
under continuous-wave driving in any cavity system with perovskite.

The exact origin of the nonlinearity in our system is still under investigation.
Previous studies on CsPbBr3 at room temperature [127] suggest that the nonlinearity is
due to exciton-exciton interactions. This is promising for probing ultrafast nonlinear
phenomena, since exciton-exciton interactions are effectively instantaneous. However,
our data is not yet sufficient to ascribe the nonlinearity to exciton-exciton interactions.
In Fig. 5.7 we observe a small overshoot observed for the P = 1 mW data at ∆/Γ = 1.8.
This overshoot is much smaller than the one observed in Chapter 2 and Chapter 3 where
the origin of the nonlinearity was thermal. Nonetheless, it may be indicative of a slow
relaxation process for the nonlinearity. Further research is needed to reveal the origin
of the dominant nonlinearity in our experiments with CsPbBr3.

5.5 Conclusion

In summary, we characterized the mechanical stability of our newly built tunable
cavity setup in a closed-cycle cryostat. We measured the transmitted intensity of a
laser, and from variations in that intensity we deduced the fluctuations in the cavity
length. The cavity stability was characterized in two situations: cryo-cooler OFF
and ON. In the former situation, our cavity architecture displayed sub-nanometer
stability based on our 5 s measurement time window. In the latter situation, we
find that the cavity stability is significantly reduced by vibrations from the cryo-
cooler. We then investigated the cavity stability in two practical experimental settings.
First we measured white light transmittance spectra of a CsPbBr3-cavity system as
a function of the cavity length for the cryo-cooler OFF and ON situations. The
measured spectra displayed strongly blurred resonances due to the cryo-cooler motion.
Second we measured the transmission of a laser while modulating the length of a
CsPbBr3-containing cavity at relatively high speed (∼ 140 Hz). There we observed very
clear resonance lineshapes, as expected for a single-mode nonlinear cavity minimally
influenced by fluctuations. Overall, our measurements reveal that the current cavity
architecture works well with the cryo-cooler OFF, or in fast measurements with cryo-
cooler ON. However, further improvements are needed for prolonged and/or slow
measurements with cryo-cooler ON. Finally we note that, beyond the construction
of the new setup, our result on optical bistability in a CsPbBr3-cavity system offers
exciting perspectives for future physics research. To the best of our knowledge, this is
the first observation of optical bistability in any perovskite system. Previous studies
on CsPbBr3 under pulsed excitation indicated the presence of optical nonlinearity
due to excitonic interactions. However, in our experiments we also observed a small
overshoot which could be indicative of a slow relaxation process. Further research is
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thus needed to determine the true origin of the dominant nonlinearity in CsPbBr3 under
continuous-wave illumination.
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non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369 (2020).

[222] J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, “Modi-
fying Chemical Landscapes by Coupling to Vacuum Fields,” Angew. Chem.
Int. Ed 51, 1592 (2012).

[223] J. Feist, J. Galego, and F. J. Garcia-Vidal, “Polaritonic Chemistry with Organic
Molecules,” ACS Photonics 5, 205 (2018).

[224] F. P. Laussy, A. V. Kavokin, and I. A. Shelykh, “Exciton-Polariton Mediated
Superconductivity,” Phys. Rev. Lett. 104, 106402 (2010).

[225] E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F.
Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorí, and
T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the
vacuum field,” Nat. Mater. 14, 1123 (2015).

[226] D. M. Coles, Y. Yang, Y. Wang, R. T. Grant, R. A. Taylor, S. K. Saikin, A.
Aspuru-Guzik, D. G. Lidzey, J. K.-H. Tang, and J. M. Smith, “Strong coupling
between chlorosomes of photosynthetic bacteria and a confined optical cavity
mode,” Nat. Commun. 5, 5561 (2014).

[227] M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. Feist, S. R. K. Ro-
driguez, F. J. Garcia-Vidal, and J. Gómez Rivas, “Plasmon-exciton-polariton
lasing,” Optica 4, 31 (2017).

[228] V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum
well excitons in semiconductor microcavities: Unified treatment of weak and
strong coupling regimes,” Solid State Commun. 93, 733 (1995).

[229] T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible Switch-
ing of Ultrastrong Light-Molecule Coupling,” Phys. Rev. Lett. 106, 196405
(2011).

107

https://doi.org/10.1021/nl202143j
https://www.nature.com/articles/lsa201717
https://doi.org/10.1021/acsnano.0c05233
https://www.nature.com/articles/nphoton.2016.248
https://www.nature.com/articles/s41566-020-0606-0
https://doi.org/10.1002/anie.201107033
https://doi.org/10.1002/anie.201107033
https://doi.org/10.1021/acsphotonics.7b00680
https://doi.org/10.1103/PhysRevLett.104.106402
https://www.nature.com/articles/nmat4392
https://www.nature.com/articles/ncomms6561
https://doi.org/10.1364/OPTICA.4.000031
https://doi.org/https://doi.org/10.1016/0038-1098(94)00865-5
https://doi.org/10.1103/PhysRevLett.106.196405
https://doi.org/10.1103/PhysRevLett.106.196405


REFERENCES

[230] D. Melnikau, R. Esteban, D. Savateeva, A. Sánchez-Iglesias, M. Grzelczak,
M. K. Schmidt, L. M. Liz-Marzán, J. Aizpurua, and Y. P. Rakovich, “Rabi
Splitting in Photoluminescence Spectra of Hybrid Systems of Gold Nanorods
and J-Aggregates,” J. Phys. Chem. Lett. 7, 354 (2016).

[231] S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Light-
Emitting Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109, 166803 (2012).

[232] W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X.
Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, “Strong Exciton–Photon Coupling
and Lasing Behavior in All-Inorganic CsPbBr3 Micro/Nanowire Fabry-Pérot
Cavity,” ACS Photonics 5, 2051 (2018).

[233] Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, “High-
Quality Whispering-Gallery-Mode Lasing from Cesium Lead Halide Per-
ovskite Nanoplatelets,” Adv. Funct. Mater. 26, 6238 (2016).

[234] X. Chen, Y. Wang, J. Song, X. Li, J. Xu, H. Zeng, and H. Sun, “Temperature
Dependent Reflectance and Ellipsometry Studies on a CsPbBr3 Single Crystal,”
J. Phys. Chem. C 123, 10564 (2019).

[235] H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein con-
densation,” Rev. Mod. Phys. 82, 1489 (2010).

[236] T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton-polariton condensates,” Nat.
Phys. 10, 803 (2014).

[237] S. R. K. Rodriguez, A. Amo, I. Sagnes, L. Le Gratiet, E. Galopin, A. Lemaître,
and J. Bloch, “Interaction-induced hopping phase in driven-dissipative coupled
photonic microcavities,” Nat. Commun. 7, 11887 (2016).

[238] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J.
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Summary

Control and manipulation of light is key to many information and communication
technologies. Despite the many impressive achievements in this direction, many
information-processing functionalities are still missing in all-optical devices. These
missing functionalities are mostly related to the fact that photons in linear media do not
mutually interact. Consequently, in linear media light cannot generally be controlled
with light. Nonlinear media offer a solution to this problem, by mediating effective
photon-photon interactions. However, in weakly nonlinear media extreme excitation
densities are required, while highly nonlinear media are often difficult (if not currently
impossible) to integrate with other existing technologies like cavities or resonators.
In this thesis, we explore ways to overcome these issues. We present experiments
with open-access tunable cavities which allow easy integration of materials inside,
while storing light for a long time so that it may interact with the material of choice.
We focus on two particular nonlinear media, where the nonlinear response can have
different origins. In Chapters 2 and 3 we couple resonators to oils. Oils provide a
strong albeit slow room-temperature thermo-optical nonlinearity, which enabled us to
discover novel behavior. In Chapters 4 and 5 we explore semiconductor cavities in
the strong light-matter coupling regime. Therein, since the relevant quasi-particles are
cavity polaritons formed by strong exciton-photon coupling, optical nonlinearity due to
polariton-polariton interactions can emerge.

Chapter 1 introduces our motivation for studying the physics of tunable nonlinear
optical cavities. We introduce a simple model to understand the behavior of light in a
nonlinear optical cavity, and the phenomenon of optical bistability: two steady states
at a single driving condition. We also discuss our two experimental approaches to get
strong optical nonlinearity in experiments presented in subsequent chapters.

In Chapter 2 we experimentally and theoretically investigate the dynamics of a laser-
driven oil-filled cavity with non-instantaneous nonlinearity. In measurements where
the laser-cavity detuning is scanned at different speeds across the optical bistability,
we find that the hysteresis area is a non-monotonic function of the scanning speed. In
the fast-speed limit where the scanning time is comparable to the memory time of the
nonlinearity, we discover that the hysteresis area decays following a universal scaling
law with exponent −1. Furthermore, we also discover signatures of non-Markovian
dynamics emerging from the effects of memory and white noise.

Chapter 3 presents a series of experiments on a laser-driven metallic grating covered
with an oil layer. For sufficiently large laser powers, we observe optical bistability in
the laser transmission, and self-sustained oscillations in the diffracted intensities by the
grating −1 and +1 diffraction orders. Also, the diffracted intensities display various
dynamical regimes. These include regimes of spontaneous symmetry-breaking, where
the diffracted intensities by the grating −1 and +1 diffraction orders are different even
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though the system and the excitation are mirror-symmetric. Finally, we also discover
spontaneous oscillations in all observables. These manifest as triangular waves in laser
transmission, and as periodic spikes in the diffracted intensities, all in synchrony.

In Chapter 4 we study strong light-matter coupling in a tunable Fabry-Perot cavity
containing a CsPbBr3 perovskite crystal. We discover spectral lineshapes resem-
bling Fano resonance and Rabi splittings (signatures of coherent coupling between
subsystems), but which are neither. We find these effects in transmittance and pho-
toluminescence measurements with objectives of different numerical aperture. Our
measurements show that even a modest numerical aperture can result in spectral arte-
facts resembling Fano resonances and Rabi splittings. The results in this chapter reveal
a possible systematic error that may have been overlooked in experiments where disper-
sive optical systems are characterized with high numerical aperture objectives. Finally,
we provide a general guideline to avoid these pitfalls in the experiments involving such
optical systems.

In Chapter 5 we present our efforts to construct and characterize a tunable cavity
setup in a closed-cycle cryostat, and to use this setup to probe the nonlinear optical
response of a CsPbBr3 perovskite semiconductor. We focus on characterizing the
mechanical stability of the cavity by measuring the transmitted intensity of a laser.
We find that the presence of the mechanical fluctuations induced by the cryo-cooler
motion strongly affects the cavity setup. We could nevertheless obtain meaningful
experimental results either by performing fast measurements (avoiding the effects
of the slow mechanical fluctuations), or by temporarily turning off the cryo-cooler.
Through the former approach, we observe a highly nonlinear response of light in a
plano-concave cavity with a CsPbBr3 perovskite crystal inside. In fact, we demonstrate
the first observation of optical bistability in any perovskite system.
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Samenvatting

Beheersing en manipulatie van licht is essentieel voor vele informatie- en commu-
nicatietechnologieën. Ondanks de vele indrukwekkende successen in deze richting,
missen er nog altijd veel functionaliteiten in het arsenaal van optische technologie om
volledig optische informatieverwerking mogelijk te maken. Deze missende function-
aliteiten zijn voornamelijk gerelateerd aan het feit dat fotonen in lineaire media geen
interactie met elkaar hebben. Hierdoor kan licht in lineaire media niet gemanipuleerd
worden met licht. Niet-lineaire media bieden een oplossing voor dit probleem door
effectieve foton-foton interacties over te dragen. In zwakke niet-lineaire media zijn
echter extreem intense lichtvelden nodig, terwijl zeer niet-lineaire media vaak moeilijk
(zo niet onmogelijk) te integreren zijn met bestaande technologieën zoals optische
trilholtes of resonatoren. In deze thesis onderzoeken we mogelijke oplossingen voor
deze moeilijkheden. We laten experimenten zien met vrij-toegankelijke en verstembare
trilholtes, waarin eenvoudig verschillende materialen geïntegreerd kunnen worden.
Tegelijkertijd wordt het licht voor lange tijd in de holte gevangen, zodat de interactie
met het materiaal naar keuze versterkt wordt. We richten ons specifiek op twee verschil-
lende niet-lineaire media, waarbij de niet-lineaire respons een verschillende oorsprong
heeft. In Hoofdstukken 2 en 3 koppelen we resonatoren aan olies. Olies bieden een
sterke maar langzame thermo-optische niet-lineariteit op kamertemperatuur. In Hoofd-
stukken 4 en 5 onderzoeken we optische trilholtes met halfgeleiders in het regime van
sterke licht-materie koppeling. De relevante quasideeltjes zijn polaritonen gevormd
door een sterke exciton-foton koppeling. Hierdoor kan een optische niet-lineariteit
worden verkregen door polariton-polariton interacties.

Hoofdstuk 1 beschrijft onze motivatie voor het bestuderen van de natuurkunde
van verstembare niet-lineaire optische trilholtes. We beschrijven een eenvoudig model
om het gedrag van licht in een niet-lineaire optische trilholte te begrijpen. Daarnaast
introduceren we het concept van optische bistabiliteit: twee stabiele toestanden die
tegelijk bestaan onder dezelfde excitatie omstandigheden. Ook behandelen we de
technieken voor het verkrijgen van een sterke niet-lineariteit als omschreven in de
volgende hoofdstukken.

In Hoofdstuk 2 onderzoeken we, zowel experimenteel als theoretisch, de dynamica
van een optische trilholte gevuld met olie en geëxciteerd door een laser. Dit geeft
een langzame niet-lineariteit. In metingen waarin de resonantiefrequentie van de de
trilholte met verschillende snelheden wordt gescand over het bereik van bistabiliteit,
vinden we dat de oppervlakte van de hysteresislus een niet-monotone functie is van de
scansnelheid. In de limiet van een hoge snelheid, waar de scantijd vergelijkbaar is met
de geheugentijd van de niet-lineariteit, vinden we dat de hysteresislus in oppervlakte
afneemt volgens een universele machtswet met exponent −1. Daarnaast vinden we
tekenen van niet-Markoviaanse dynamica, ontstaan door geheugeneffecten en witte
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ruis.
Hoofdstuk 3 toont een serie metingen aan een laser-geëxciteerd metallisch rooster

bedekt met een laag olie. Bij voldoende hoog laser vermogen zien we optische bista-
biliteit in de transmissie en zelfoscillaties in de −1 en +1 diffractieordes door het
rooster. Hieronder vallen gebieden met spontane breking van symmetrie, waarbij de
intensiteit van de −1 en +1 diffractieordes verschillend zijn, ondanks dat het systeem
en de excitatie symmetrisch zijn. Tot slot vinden we spontane oscillaties in alle ob-
servabelen. Deze laten zich zien als een zaagtand in de transmissie van de laser, en als
periodieke pieken in de intensiteiten van de diffractie. Deze verschillende oscillaties
zijn allen synchroon met elkaar.

In Hoofdstuk 4 onderzoeken we sterke koppeling tussen licht en materie in een
verstembare Fabry-Pérot trilholte met een CsPbBr3 perovskiet kristal. We vinden in
optische metingen spectrale lijnvormen gelijkend aan Fano resonanties en Rabi splits-
ing (tekenen van een coherente koppeling tussen subsystemen), terwijl het systeem in
werkelijkheid geen van beide eigenschappen bezit. We vinden deze effecten in trans-
missie en fotoluminescentie metingen met objectieven met verschillende numerieke
apertuur. Onze metingen tonen aan dat zelfs een relatief klein numeriek apertuur kan
resulteren in spectrale artefacten gelijkend op Fano resonanties en Rabi splitsingen. De
resultaten in dit hoofdstuk onthullen een mogelijke systematische fout, welke over het
hoofd kan zijn gezien in experimenten waarbij dispersieve optische systemen gekarak-
teriseerd worden door objectieven met hoog numeriek apertuur. Tot slot geven we een
algemene richtlijn om deze valkuilen te vermijden bij experimenten met zulke optische
systemen.

In Hoofdstuk 5 tonen we onze inspanningen tot het construeren en karakteriseren
van een verstembare trilholte in een gesloten-cyclus cryostaat, en om deze opstelling te
gebruiken om de niet-lineaire optische response van CsPbBr3 perovskiet te onderzoeken.
We zoomen in op de karakteristiek van de mechanische stabiliteit van de trilholte
door de transmissie van een laser te meten. We vinden dat mechanische fluctuaties
veroorzaakt door de beweging van de cryostaatpomp de werking van de opstelling
sterk beïnvloeden. Desondanks waren we in staat zinvolle experimenten uit te voeren
door snelle metingen te doen (zodoende omzeilen we de effecten van de langzame
mechanische fluctuaties), of door de cryostaatpomp tijdelijk uit te zetten. Met de eerste
methode vinden we een zeer niet-lineaire response van licht in een vlak-holle trilholte
met een CsPbBr3 perovskiet kristal erin. We demonstreren hiermee voor het eerst de
observatie van optische bistabiliteit in een systeem van perovskiet.
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