
Spontaneous Symmetry Breaking in a Coherently Driven
Nanophotonic Bose-Hubbard Dimer

B. Garbin ,1 A. Giraldo ,2,3 K. J. H. Peters ,4 N. G. R. Broderick,5,3 A. Spakman,4 F. Raineri,1,6

A. Levenson,1 S. R. K. Rodriguez ,4 B. Krauskopf,2 and A. M. Yacomotti1
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We report on the first experimental observation of spontaneous mirror symmetry breaking (SSB) in
coherently driven-dissipative coupled optical cavities. SSB is observed as the breaking of the spatial or
mirror Z2 symmetry between two symmetrically pumped and evanescently coupled photonic crystal
nanocavities, and manifests itself as random intensity localization in one of the two cavities. We show that,
in a system featuring repulsive boson interactions (U > 0), the observation of a pure pitchfork bifurcation
requires negative photon hopping energies (J < 0), which we have realized in our photonic crystal
molecule. SSB is observed over a wide range of the two-dimensional parameter space of driving intensity
and detuning, where we also find a region that exhibits bistable symmetric behavior. Our results pave the
way for the experimental study of limit cycles and deterministic chaos arising from SSB, as well as the
study of nonclassical photon correlations close to SSB transitions.
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The Bose-Hubbard dimer (BHD) is a paradigmatic
system featuring quantum dynamics of bosons hopping
across sites and interacting on site [1]. The competition
between these processes in the closed BHD unveiled a
wealth of quantum and classical nonlinear phenomena,
including self-trapping [2] and symmetry breaking [3].
In most real BHDs, however, particle losses need to be
compensated by external driving [4–7]. These driven-
dissipative BHDs have recently drawn much interest, as
they display intriguing classical [8,9] and quantum [10]
phenomena due to the balance between driving and dis-
sipation. Driven-dissipative BHDs have been implemented
on light-matter systems like semiconductor microcavities
[11–13] and superconducting circuits [14,15].
Spontaneous symmetry breaking (SSB) is a universal

phenomenon occurring when a symmetric system ends up
in an asymmetric state. SSB and its applications have
attracted significant interest in optics [16–23]. In single
coherently driven optical cavities, SSB emerges from the
nonlinear coupling between two polarization [24] or
counterpropagating [21] modes [25–28]. SSB has also
been observed in evanescently coupled photonic crystal
nanolasers [19], which share some properties with inco-
herently driven BHDs [29]. However, optical gain satu-
ration—a nonlinear mechanism reminiscent of inelastic
two body collisions in atomic systems [8]—results in a

fundamental difference with respect to BHDs. Compared to
the incoherent pumping case, coherent driving offers a
more versatile parameter control and suppressed sponta-
neous emission noise. Furthermore, coherently driven BHD
have been predicted to undergo entanglement close to the
SSB transition [30], thereby bridging classical nonlinear
dynamics and quantum optics.
Despite the strong interest in coherently driven dissipa-

tive BHD physics, SSB remains unreported. This is likely
due to two reasons. First, conventional driven-dissipative
BHDs display symmetry broken phases restricted to narrow
parameter regions, which coexist with other optical bist-
abilities [9,31]. Thus, accessing SSB is challenging.
Second, resonant optical excitation experiments require
mode matching, thereby leading to more stringent con-
ditions than their incoherent pumping counterparts.
Here we demonstrate coherently driven SSB in a photonic

crystal driven-dissipative BHD. Unlike standard BHDs, our
system features a negative photon hopping energy that, in
conjunction with a positive on site interaction energy,
results in a broken symmetry phase across large parameter
regions [9]. These are pure pitchfork-bifurcated phases; they
do not coexist with a bistable homogeneous state which
might otherwise hinder the SSB observation.
We consider a BHD of two sites—“or cavities”—that

is coherently driven symmetrically with amplitude F and
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frequency ωp, where photons interact on site with energy
U > 0 and hop across sites with energy J<0 [see Fig. 1(a)].
Here, U and J respectively represent the nonlinearity per
photon and the photon hopping rate [31]. We apply the
truncated Wigner approximation [4], neglecting quantum
correlations but accounting for quantum fluctuations via
stochastic terms in semiclassical equations of motion. In a
frame rotating at ωp, the expectation values α1;2 of the
bosonic operators â1 and â2 in the two sites satisfy

i
dα1;2
dt

¼
�
−Δ − i

γ

2
þ 2Ujα1;2j2

�
α1;2 − Jα2;1

þ F1;2 þ
ffiffiffi
γ

2

r
ζ1;2ðtÞ: ð1Þ

Here, Δ ¼ ωp − ωc is the detuning between ωp and the
cavities’ resonance frequency ωc, and F1 ¼ F2 ¼ F are the
coherent driving amplitudes applied to each cavity, taken
to be equal here γ is the loss rate. The last term in Eq. (1)
models the fluctuations as complex Gaussian noise terms
ζjðtÞ ¼ ½ζ0jðtÞ þ iζ00j ðtÞ�=

ffiffiffi
2

p
(j ¼ 1, 2) which have zero

mean and are delta-correlated in t.
In our experimental implementation, the sites are given

by two evanescently coupled photonic crystal (PHC)
nanocavities with embedded quantum wells (QWs) illumi-
nated by an optically resonant laser field. The bosons are
intracavity photons that experience carrier-induced disper-
sive nonlinearities for energies below the QW absorption
maximum (λQW ≈ 1510 nm), and carrier densities below
QW-absorption saturation. Within our excitation range

(λ ∼ 1565 nm), band filling due to one photon absorption
dominates, leading to a blueshifting intensity-dependent
refractive index (U > 0) [32–35]. Using Eq. (1) to model
the PHC dimer, we assume instantaneous Kerr nonlinearity
due to ultrafast carrier dynamics.
For identical cavities with 2jJj > γ and in the linear

regime, two hybrid modes arise [Fig. 1(b)]: the symmetric
mode with α1 ¼ α2, and the antisymmetric mode with
α1 ¼ −α2; the mode splitting and their relative spectral
position, respectively, depend on the magnitude and sign of
J. Upon coherent in-phase symmetric illumination of the
two cavities, only the symmetric mode is excited. The sign
of J has a large impact on the observed behavior [Fig. 1(c)]:
provided U > 0, pure SSB only exists for J < 0 (purple
region and top inset). For J > 0, the bistability of the
homogeneous symmetric states prevails (green region and
bottom inset); see Fig. 1(c) for Δ ¼ 0.
Decreasing the value of Δ from zero results in an overlap

of these two regions near J ¼ 0; this creates regions of, e.g.,
periodic and chaotic behavior (see Supplemental Material
[36]). For J > 0, however, the SSB transition always lies
inside the bistable symmetric zone. On the contrary, the pure
supercritical pitchfork bifurcation is only warranted for
J < 0, which we can implement experimentally.
Figure 2(a) shows our experimental setup. Two evan-

escently coupled photonic-crystal nanoresonators are real-
ized as optical defects (three missing holes, known as
L3 cavities) in a 2D triangular lattice of air holes in a

(a)

(b)

(c)

FIG. 1. Illustration of (a) two evanescently coupled injected
resonators and (b) the resulting split hybrid symmetric (ωS) and
antisymmetric (ωAS) modes. (c) Two-parameter bifurcation dia-
gram for Δ ¼ 0 showing the regions of bistability of symmetric
(green region) and asymmetric (purple region) steady states. The
insets represent bifurcation slices showcasing the existence
of pitchfork (top, −2J=γ ¼ þ3.3) and saddle-node (bottom,
−2J=γ ¼ −3.3) bifurcations.

(a)

(b)

(e)

(c)

(d)

FIG. 2. Experimental setup and operational regime. (a) Sche-
matic of the experimental setup. BS, beam splitter; PBS, polar-
izing beam splitter; L1, 100 cm focal lens; linear spectroscopy
(dashed green circles) and individual cavity output (blue and
orange dashed circles). (b)–(d) Selected spectra for given sample
horizontal positions. (e) Evolution of the spectra with the sample
horizontal position.
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free-standing InP membrane. Photons are confined in the
plane thanks to the photonic band gap. Furthermore, the
nonlinearity is provided by confined charge carriers in four
embedded In0.53Ga0.47As QWs. The lattice period a is
435 nm (hole radii r0 ¼ 116 nm). Spatial mode matching
of the illumination laser beam to the cavity mode is
enhanced by means of far-field engineering of the PHC
cavity [37] (hole radii r2 ¼ 137 nm). Such mode matching
is further improved by using a lens with 100 cm focal
length (L1 in Fig. 2). Importantly, negative J is the
consequence of a larger effective refractive index of the
antisymmetric mode in the underlying two-coupled W1
waveguides. Targeted mode splitting is further achieved by
modifying the radii of the central row of holes (hole radii
r0;2 − 20%) [19,37]. The two cavities are coherently driven
close to their resonant wavelength (≈1563.9 nm) with a
narrow-linewidth widely tunable laser, whose beam is split
for injection power monitoring. Finally, a 100× magnifi-
cation with 0.95 numerical aperture microscope objective
(Olympus MPLAN x100 IR) focuses the laser beam to a
2.2 μm diameter spot on the sample from the top. The
sample is mounted on a PZT driven 6-axis translation stage
for controlling the relative position between the driving
beam and the cavities and, hence, the relative power
impinging on the two cavities. We use a half wave plate
to rotate the linearly polarized injection beam at input,
by 45° from the cavities’ polarization. The cavities’ outputs
are subsequently separated from the reflected part of the
injection beam with polarization optics, and split to allow
spectral and temporal analysis. The spectral part is directed
to a liquid-nitrogen-cooled spectrometer (Acton SP 2500).
To independently analyze three different regions of the
sample, the reflected intensity is split, selectively coupled
into three different single mode fibers, and directed to (i) a
750 Hz bandwidth Newfocus fW detector for linear
spectroscopy (large dashed circle in Fig. 2) and (ii) two
550 MHz bandwidth low-noise APD detectors (Princeton
Lightwave PLA-8XX, NEP ¼ 250 fW=

ffiffiffiffiffiffi
Hz

p
) for measur-

ing the output intensity of each cavity (smaller dashed
circles in Fig. 2).
We first perform linear reflectivity spectroscopy by

sweeping the driving laser wavelength. Figures 2(b)–2(d)
show spectra for selected horizontal positions of the driving
beam, measured with the fw detector. The relative excita-
tion of the two hybrid modes depends on the spatial
location of the driving beam relative to the sample. For
an off-centered beam [Figs. 2(b) and 2(d)] both modes are
excited. For a centered beam [Fig. 2(c)], only the sym-
metric mode is excited. Figure 2(e) shows a collection of
such spectra with the driving position varied along the
horizontal axes. It allows us to identify the central driving
condition (horizontal position labeled 0 μm) which mini-
mizes driving asymmetries [F1 ≈ F2; see Eq. (1)].
Since J is negative, the symmetric mode is located at a

shorter wavelength (1563.2 nm) than the antisymmetric one

(1564.5 nm). Based on the measured mode splitting
(1.3 nm) and mode linewidth (0.39 nm), we estimate the
normalized coupling constant κ ¼ −2J=γ ≈ 3.3; this is
compatible with SSB observation for low excitation
power. Increasing the splitting to jκj≳ 5, for instance
without barrier hole modification, increases the injection
amplitude of the SSB threshold and might hinder obser-
vation [see Fig. 1(c)].
After locating the illumination spot at the center of the

dimer [line (c) in Fig. 2(e)], the excitation power (purple
traces in Fig. 3) is ramped up to about 1.5 mW within
∼300 ns to minimize thermal effects. Figures 3(a) to 3(b)
show typical cavity intensity time traces (blue and orange
curves) for two different values of the normalized detuning
δ ¼ −2Δ=γ. At low driving powers, the two cavity output
traces are coincident, indicating that a delocalized (sym-
metric) hybrid mode is being excited. At a time of about
285 ns, however, the two output intensities part, which
we identify as the SSB transition point. The spontaneous
character of the SSB manifests itself as randomly selected
asymmetric states (Fig. 3, top and middle traces). The
bottom traces in Fig. 3, built by overlapping maxima of
histograms of 500 successive realizations, evidence the
mirror symmetry of the two asymmetric states (see
Supplemental Material [36] for comparisons with numeri-
cal simulations), and can be seen as the reconstruction of
the underlying pitchfork bifurcation.
When increasing the magnitude of the detuning from

Figs. 3(a) to 3(b), we need to realign the illumination spot
to observe randomly selected asymmetric states. This may
be understood from Eq. (1) in the presence of asymmetries
in the cavity frequencies (ωc;1 ≠ ωc;2) and driving fields
(F1 ≠ F2). The first one is due to unavoidable fabrication
imperfections (≈0.13� 0.07 nm), while the second one
accounts for deviations of the illumination spot from the
dimer center. Indeed, numerical simulations (not shown)
indicate that the asymmetry parameter ξ ∼ F1 − F2 that

(a) (b)

FIG. 3. Temporal observation of SSB. (a),(b) Top and middle
traces are subsequent realizations of the same experiment.
Bottom traces are histogram maxima computed from 500
realizations; shown are the output powers of the two cavities
(blue and orange, respectively) and the driving power (purple
curve). (a) δ ¼ −1.59. (b) δ ¼ −2.86.
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induces random switching changes with Δ, consistent with
the experimental observation; this explains the difference in
cavity intensities (blue and orange curves) when moving
from Figs. 3(a) to 3(b) related to slight misalignment in the
optical detection devices. The observation of SSB through
compensation of two asymmetry parameters has recently
been reported in Ref. [24].
Notice further that Fig. 3(b) also shows an asymmetry

when comparing the ramping up and down measurement.
We attribute this to either or both (i) small asymmetries
in the cavities’ design that influences the position of the
transitions and (ii) a critical slowing down at the SSB
transition induced by the ramp [38].
Figure 4 illustrates the three main regimes of operation

observed in our experiment, as well as the associated SSB
transition and bistability. Projections of the phase space
onto the ðI1; I2Þ plane of the two measured intensities, for
given values of injection power and detuning, show (i) equal
intensity in the two cavities [Fig. 4(a)], (ii) bistable
operation with symmetric cavity intensities [Fig. 4(b)],
and (iii) bistable operation with asymmetric cavity inten-
sities [symmetry broken states, Fig. 4(c)]. To identify the
different phases and transitions as parameters change,
we consider the intensity difference I− ¼ I1 − I2 and
sum Iþ ¼ I1 þ I2, which indicate the presence of asym-
metric and symmetric states by highlighting anticorrela-
tions and correlations, respectively (see Supplemental
Material [36]). To identify the number of states as the
injected power is varied, we analyze, for two given values
of detuning, the number of maxima in I− and Iþ [Figs. 4(d)
and 4(e), respectively]. For comparatively small detunings
as in Fig. 4(d), I− exhibits, at an injected power of about

0.51 mW, a SSB transition from a single to two asymmetric
coexisting steady states [see Fig. 4(c)]. For comparatively
large detunings as in Fig. 4(e), on the other hand, Iþ

exhibits two maxima in the range of injected power from
0.26 mW to 0.35 mW, which is evidence for a region
of bistability with two coexisting symmetric steady states
[see Fig. 4(b)].
Figures 4(f) and 4(g) show corresponding plots obtained

by simulating Eq. (1) while varying the normalized driving
amplitude f ¼ 4F

ffiffiffiffiffiffiffijUjp
=γ3=2. We also set U ¼ γ=100,

which we estimated by comparing numerical and exper-
imental standard deviations of the intensity around the
SSB transition. Further rescaling the intracavity field as
ðA;BÞ ¼ ð−2iα�1

ffiffiffiffiffiffiffiffiffiffiffijUj=γp
;−2iα�2

ffiffiffiffiffiffiffiffiffiffiffijUj=γp Þ [9] allows us to
interpret γ=jUj ∼ 100 as the characteristic intracavity pho-
ton number; note that the thermodynamic limit corresponds
to γ=jUj → ∞, for which the mean-field solutions—i.e.,
those without stochastic fluctuations—are strictly justified.
Analytical results of bifurcation points of the mean-field
BHD derived in [9] give an important handle to analyse
the stochastic simulation results. Firstly, the mean-field
pitchfork bifurcation associated with the SSB transition
occurs at f ≈ 4.04 in Fig. 4(f); this is consistent with the
stochastic numerical simulations, which also indicate
the presence of random switching between asymmetric
states from this value up to f ≈ 5.5. Secondly, the two
predicted mean-field bifurcations of the symmetric state
for 1.67≲ f ≲ 2.15 clearly set the limits of the observed
hysteresis cycle in Fig. 4(g).
We now identify in Fig. 5 the different regimes of

operation in the two-dimensional parameter plane of

(a)

(b)

(c)

(d) (f)

(g)(e)

FIG. 4. Identification of operational regimes. (a)–(c) Selected projections of the phase space showing monostable symmetric, bistable
symmetric, and bistable asymmetric steady states, respectively. (d),(e) Experimental and (f),(g) numerical histograms computed from
500 realizations, showing I− [(d),(f)] and Iþ [(e),(g)] versus injection strength. (a) 0.22 mW. (b) 0.26 mW. (c) 1.03 mW. (a),(c)
δ ¼ −0.82. (d),(f) δ ¼ −2.86. (b),(e),(g) δ ¼ −6.19.
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driving strength and detuning. The experimental bifurca-
tion diagram in Fig. 5(a) was created by color coding the
number of maxima found for Iþ and I−. It reveals large
regions of the parameter plane for which the system
exhibits two asymmetric steady states; the SSB transition
that bounds this region to the left moves toward lower
injection power Pin as the detuning δ is decreased; it is
characterized by distinct maxima of I−. Notice also the
region of symmetric bistability (identified by maxima of Iþ
only) that exists for smaller δ; it may also overlap (dotted
area) with asymmetric behavior: three states are observed
(one lower symmetric and two higher asymmetric). We
attribute the absence of asymmetric states for −7≲ δ≲ −6
to large deviations of the sample’s position with regard to
the laser beam at larger detunings.
Figure 5(b) shows the associated two-parameter bifurca-

tion diagram of Eq. (1) without noise (see Supplemental
Material [36]) computed with AUTO07P [39]. Overall, it is in
good agreement with the experimental bifurcation diagram
in terms of where symmetry-broken dynamics and bist-
ability between symmetric states can be found. More
specifically, the saddle-node bifurcation curve S with the
cusp point CP at ðf; δÞ ≈ ð1.24;−5.03Þ delimits the region
with bistability between symmetric steady states. The SSB
transition is identified as a pitchfork bifurcation P [30,31],
yielding a region with two coexisting asymmetric steady
states. As the detuning is decreased, the Hopf bifurcation
curveHmarks the onset of asymmetric oscillations,whereas
PD indicates the first bifurcation of a period-doubling route
to chaos, which eventually creates a pair of asymmetric

chaotic attractors that are each confined to one cavity [9];
they eventually collide, forming a symmetric chaotic
attractor that features irregular switching between the two
cavities [40]. This irregular switching has recently been
observed in microresonators [41].
In conclusion, we have reported the first experimental

realization of SSB in a coherently driven photonic dimer.
For repulsive nonlinearities (U > 0), we have shown that
pure supercritical pitchfork bifurcations only exist for
negative photon hopping energies (J < 0); we also predict
this to hold for J > 0 provided that U < 0. The SSB
transition consists of the splitting of the two intracavity
intensities under symmetric driving conditions; this is
observed as two different randomly selected states where
light is localized in either of the two cavities. We mapped
out the SSB transition in a large parameter plane and
identified the region of bistability between symmetric
states. Our experiments are in good agreement with the
mean-field Bose-Hubbard dimer model, and stochastic
simulations validated the random nature of this process.
The theory for the BHD also predicts the existence of limit
cycle oscillations and deterministic chaos. Our results
constitute an important step toward the study of symmetry
breaking in the few photon regime [30], at the crossroad
between nonlinear dynamics and quantum optics.
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