
 

Extremely Broadband Stochastic Resonance of Light and Enhanced Energy Harvesting
Enabled by Memory Effects in the Nonlinear Response
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We report the first observation of non-Markovian stochastic resonance (SR), and we discover that
memory effects in the nonlinearity extremely enlarge the SR bandwidth. Our experimental system is an oil-
filled microcavity which, driven by a continuous wave laser, has memory in its nonlinear optical response.
Modulating the cavity length while adding noise to the driving laser, we observe a peak in the transmitted
signal-to-noise ratio as a function of the noise variance. Through simulations, we reproduce our
observations and extrapolate that the SR bandwidth could be ∼3000 times larger in our cavity than in
a Kerr-nonlinear cavity. Experiments evidencing this memory-enhanced bandwidth across two decades are
presented. As an extension of our results, we numerically demonstrate an order-of-magnitude enhancement
in energy harvesting thanks to a nonlinearity with memory.
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Stochastic resonance (SR) is a phenomenon wherein an
optimum amount of noise amplifies the response of a
nonlinear system to a periodic signal [1]. The essence of SR
can be recognized in the behavior of a Brownian particle in
a double well potential (DWP). A Brownian particle
escapes from a potential well in a characteristic time
τesc ∝ expðE=kBTÞ, with E the energy barrier and kBT
the energy of thermal fluctuations [2]. Modulating the
potential with period Tmod ¼ 2τesc synchronizes the par-
ticle’s Brownian motion with the modulation, resulting in
two barrier crossings per period—stochastic resonance.
SR was introduced as an explanation for recurrent ice

ages [3,4]. Since then, SR has been extensively observed in
physics [5–15], chemistry [16–19], biology [20–24], ecol-
ogy [25], psychophysics [26–28], climate science [29],
finance [30,31], and social science [32]. Applications of SR
to imaging [33–35] and mechanical engineering [36,37]
have also emerged. To date, all observations of SR have
been described within the Markov approximation neglect-
ing memory effects. While non-Markovian dynamics have
been observed in various systems [38–45] and are expected
to modify SR [46–48], non-Markovian SR has not been
experimentally reported.
In this Letter, we report the first observation of non-

Markovian SR and discover an extremely enlarged band-
width thanks to memory effects in the nonlinearity. We
investigate an oil-filled optical microcavity with thermo-
optical nonlinearity. Unlike the class of non-Markovian
systems introduced by Mori [49] and described by gener-
alized Langevin equations [50], the memory of our cavity is
unrelated to its dissipation and noise spectrum. We drive
our cavity with a laser to which we add a controlled amount
of Gaussian white noise. By periodically modulating the

cavity length, we imprint a signal on the laser. SR is
evidenced by a peak in the transmitted signal-to-noise ratio
(SNR). Simulations accounting for the memory time of the
nonlinearity reproduce our observations, and suggest that
the SR bandwidth should be ∼3000 times larger in our oil-
filled cavity than in a Kerr-nonlinear cavity. Experimental
indications of this memory-enhanced bandwidth are pre-
sented. Finally, we numerically demonstrate how memory
effects in the nonlinearity substantially increase energy
harvesting using a mechanical oscillator.
Figure 1(a) illustrates our setup, comprising a tunable

microcavity filled with macadamia oil. The cavity is made
by a planar and a concave mirror. The planar mirror is a
60 nm thick silver layer on a glass substrate. The concave
mirror (7 μm diameter, 12 μm radius of curvature) is made
by milling a glass substrate with a focused ion beam [51],
and subsequently coating it with a distributed Bragg
reflector (DBR). The DBR has a peak reflectance of
99.9% at 530 nm. We use piezoelectric actuators to align
and position the concave mirror and to modulate the planar
mirror. Thanks to the strong optical confinement provided
by the concave micromirror, we effectively probe a single
optical mode throughout the modulation range. Indeed, the
nearest mode is ∼10 linewidths away. The cavity is driven
by a 532 nm single-mode continuous wave laser, which
heats the oil and causes its refractive index to decrease. A
similar intensity-dependent refractive index underlies the
observation of SR in Kerr-nonlinear cavities at cryogenic
temperatures [9]. Unlike those cavities, our oil-filled cavity
has: (i) a strong nonlinearity at room temperature, and
(ii) noninstantaneous thermal relaxation leading to non-
Markovian dynamics. Our excitation and collection objec-
tives both have 10×magnification and a numerical aperture
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of 0.25. In all experiments presented here, we drive the 15th
longitudinal and fundamental transverse cavity mode with
a laser power of 7.8 mW at the excitation objective. The
transmitted light is measured with a photodetector and an
oscilloscope.
In a frame rotating at the laser frequency ω, the light field

α in our single-mode oil-filled cavity satisfies the following
stochastic integrodifferential equation:

i _αðtÞ ¼
�
−Δ − i

Γ
2
þ U

Z
t

0

dsKðt − sÞ½jαðsÞj2 − 1�
�
αðtÞ

þ i
ffiffiffiffiffi
κL

p
F þ Dffiffiffi

2
p ½ξ1ðtÞ þ iξ2ðtÞ�: ð1Þ

Δ ¼ ω − ω0 is the laser-cavity detuning, with ω0 the
resonance frequency. Γ ¼ γa þ κL þ κR is the total loss
rate, with γa the absorption rate and κL;R the input-output
rates through the left and right mirror. U is the nonlinearity
strength, with noninstantaneous character captured by the
time integral in Eq. (1). The integral contains the memory
kernel KðtÞ ¼ expð−t=τÞ=τ with τ the thermal relaxation
time. This form of the kernel ensures that steady states
[ _α ¼ 0 in Eq. (1)] are the same as for an instantaneous
nonlinearity [52]. F is the laser amplitude. ξ1ðtÞ and ξ2ðtÞ
provide Gaussian white noise in the laser amplitude
and phase, with combined variance D2. For τ → 0 and
D ¼ ffiffiffiffiffiffiffiffi

Γ=2
p

, Eq. (1) describes a Kerr-nonlinear cavity
influenced by quantum fluctuations within the so-called
truncated Wigner approximation [53]. Details about our

calculations based on the xSPDE MATLAB toolbox [54], and
values of model parameters are in the Supplemental
Material [55].
For vanishing noise (D ¼ 0) and large F making the

interaction energy larger than the losses (i.e., Ujαj2 ≳ Γ),
Eq. (1) predicts optical bistability: two steady states with
different intensity jαj2 at a single driving condition. To
observe bistability, we measure the transmitted laser power
at constant F while opening and closing the cavity. The
cavity length maps to Δ=Γ, with Γ the linewidth at low
power. Figure 1(b) shows transmission measurements
displaying bistability for 2≲ Δ=Γ≲ 5.5. The overshoot
at Δ=Γ ∼ 1.5 is due to the oil’s noninstantaneous thermal
relaxation [52]. Steady-state calculations assuming instan-
taneous nonlinearity [gray curves in Fig. 1(b)] do not
reproduce this overshoot. In contrast, dynamic simulations
[purple curves in Fig. 1(b)] based on Eq. (1) reproduce all
our observations, including the overshoot. The overshoot
width is determined by Tmod=τ, with τ ¼ 10� 1 μs in our
cavity (see Supplemental Material [55]).
For D ≠ 0 and constant (F, Δ=Γ) yielding bistability, α

randomly switches between states at a rate τ−1esc ∝ expðDÞ.
This switching behavior is reminiscent of a Brownian
particle in a DWP [56], albeit the analogy is not exact
because a conservative potential cannot be defined for
our driven-dissipative cavity. In the Supplemental Material
[55], we show this switching behavior in stochastic
trajectories of jαj2 and the corresponding probability
density functions.
We demonstrate SR by modulating the cavity length and

measuring the transmission. The cavity acts as a transducer,
converting a mirror displacement to an optical signal. We
set a subthreshold modulation amplitude of 12 nm [double-
sided arrow in Fig. 1(b)], which is insufficient for deter-
ministic switching given our laser power. Using the setup
illustrated in Fig. 1(a), we add uncorrelated amplitude and
phase noise by passing the laser through electro-optic
modulators connected to different waveform generators.
The noise power is approximately constant up to 200 kHz
(see Supplemental Material [55]), well above our cavity
modulation frequency fmod ¼ 42.5 Hz and above the
thermal relaxation rate τ−1 ¼ 100 kHz. Effectively, this
corresponds to white noise. Moreover, the standard
deviation of the noise D is proportional to the peak-to-
peak (PP) voltage Vpp in the waveform generators [55].
Figures 2(a)–2(d) and 2(e)–2(h) show the experimental

transmission and power spectral density (PSD), respec-
tively, for different Vpp. For the smallest Vpp, the trans-
mission is modulated by the changing cavity length
[Fig. 2(a)] and the PSD shows a peak at fmod [Fig. 2(e)].
Noise in these measurements is due to the laser and
detection and plays a minor role in our observations.
Increasing Vpp induces random switches between high
and low transmission states [Fig. 2(b)], which then max-
imally synchronize with the modulation when Vpp ¼ 70 V
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FIG. 1. (a) An oil-filled optical microcavity driven by a noisy
laser. Electro-optic modulators (EOMs) add amplitude and phase
noise to a continuous wave laser. The cavity length is controlled
with a piezoelectric actuator, and the transmission is measured
with a photodetector (PD). (b) Transmission, when slowly
closing and opening the cavity, shown as black and green
squares, respectively. The cavity length was converted to Δ=Γ
[see Eq. (1)] using the laser frequency and the cavity resonance
linewidth at low power. Solid and dashed gray curves are stable
and unstable steady states, respectively. Purple curves are
dynamic hysteresis simulations using Eq. (1) with D ¼ 0.
Double-sided arrow indicates the 12 nm modulation range used
in Fig. 2.
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[Fig. 2(c)]. Figure 2(i) shows how this noise-assisted
synchronization results in greater signal power, especially
in the higher harmonics, while the output noise floor also
increases. Further increasing Vpp raises the noise floor and
decreases power in higher harmonics (see Supplemental
Material [55]), thereby resulting in an optimum noise
strength for signal amplification. Note that we biased the
system to the high-transmission state in our low-noise
measurements [Figs. 2(a) and 2(b)]. Biasing the system to
the low-transmission state would have resulted in a weaker
signal for small Vpp and greater amplification.
Next, we analyze the transmitted signal-to-noise ratio.

We define the SNR as the power in the first six harmonics
including the fundamental fmod (integrated over a fixed
0.1fmod bandwidth), relative to the noise power. Figure 3(a)
shows the SNR versus Vpp. We distinguish three regimes.
For small Vpp, the SNR decreases with increasing Vpp. This
is due to more frequent random switching and a growing
noise floor. For intermediate Vpp, the SNR increases with
Vpp. Here, switching events increasingly synchronize with
the modulation. Finally, for large Vpp the SNR decreases
with Vpp. This is evidenced in the reduced amplitude of the

signal harmonics (see Supplemental Material [55]). In
combination, these three regimes result in a SR peak around
Vpp ¼ 70 V. While not shown here, the height and width of
the SR peak depend on the signal waveform [57].
We further validate our model by reproducing our SNR

measurements. This will enable us to confidently simulate
the effect of the memory time τ on SR over an extended
range, which is not easily done in experiments. Figure 3(b)
shows simulation results corresponding to the measure-
ments in Fig. 3(a). We consider three values of τ, keeping
the ratio Tmod=τ constant since it determines the detuning
range for which bistability occurs [52]. For τ > Γ−1, we
observe a SNR peak growing with τ and remaining at
approximately constant D=Γ. This behavior is due to two
competing effects. On one hand, increasing Tmod makes the
SNR peak grow and shift to smaller D; the same occurs in
standard Markovian SR. On the other hand, increasing τ
slightly reduces the SNR peak and shifts it to larger D
(see Supplemental Material [55]); this effect is unique to
our non-Markovian system. We attribute the peak SNR
reduction to the overshoot following each switching [see
Fig. 2(b)], which makes the signal further deviate from a
pure sinusoidal. The shift to larger D is associated with
nonexponential distributions of residence times in the
metastable states of the cavity [52], which is the hallmark
of non-Markovian dynamics. Essentially, thermal relaxa-
tion imposes a high-frequency cutoff for switching events
at τ−1. This results in SR at larger noise variance than in the
Markovian case.
In Fig. 4(a), we calculate the average number of switches

per cycle navg as a function of Tmod, for different τ and
constant D ≠ 0 [55]. Recall that SR corresponds to
navg ≈ 2. For τ ¼ 0, the black circles in Fig. 4 show navg
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FIG. 2. (a)–(d) Transmission measurements as a function of
time for increasing peak-to-peak (PP) voltage Vpp supplied to the
modulators adding noise. The arrow in (b) indicates the overshoot
after a switching event. (e)–(h) Power spectral densities obtained
by Fourier transforming the corresponding time traces in (a)–(d).
Shaded area indicates the bandwidth of the fundamental. (i) Same
data as in (e),(g), for an extended frequency range.
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FIG. 3. (a) Measured signal-to-noise ratio (SNR) as a function
of the peak-to-peak voltage Vpp supplied to the modulators
adding noise. Experimental conditions are as in Fig. 2. Each
data point is an average of ten measurements of two seconds
(∼800 modulation cycles in total). (b) Calculated SNR as a
function of the standard deviation D of the noise (divided by the
total loss rate Γ) for three values of the thermal relaxation time τ.
The ratio Tmod=τ ¼ 103 is kept constant. Model parameters (see
Supplemental Material [55]): F=Fc ¼ 2.73, Δmin ¼ 2.08 Γ,
Δmax ¼ 5.58 Γ. Error bars indicate 1 standard deviation.
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simply increasing linearly with Tmod. In our system, this
Markovian limit is reached for τ ≪ Γ−1. More interesting
behavior arises in the non-Markovian regime where
τ > Γ−1. Taking Γτ ¼ 4 and Γτ ¼ 10 as examples,
Fig. 4 shows a “plateau” at the SR condition navg ≈ 2.
This plateau represents an enlargement of the signal
frequency range in which SR can be achieved, i.e., the
SR bandwidth. Figure 4(b) shows similar behavior in our
oil-filled cavity, where the plateau at navg ≈ 2 evidences
broadband SR.
The enlarged SR bandwidth is due to the slow non-

linearity of our system. At the navg ≈ 2 plateau (one switch in
the up ramp, one switch in the down ramp), an extra switch
within the ramp requires much larger Tmod or stronger noise.
This is due to the long relaxation time to a steady state after a
switch. The bandwidth is further enlarged by the slow
increase of navg with Tmod at the edges of the plateau.
Indeed, in the high-frequency regime where navg < 2,
bistability gradually disappears because the nonlinearity
does not have time to build up [52]. For slow modulations,
navg increases linearly with Tmod as in the Markovian case,
albeit at a smaller rate. Consequently, SR becomes broad-
band. The SR bandwidth increases with τ as shown in the
Supplemental Material [55]. By extrapolating the SR band-
width up to our experimental τ ¼ 10 μs, and considering
Γ−1 ¼ 4 ps in our experiments, we deduce that the SR
bandwidth could be 3200� 400 times larger in our oil-filled
cavity than in a Kerr-nonlinear cavity, if the fitted trend is
maintained over a broad range. Because of the response time
of our piezoelectric actuator and low-frequency mechanical
fluctuations, we cannot perform measurements over such an
extended range. Nevertheless, Fig. 4(b) clearly demonstrates
broadband SR in experiments.
Inspired by the discovery of memory-enhanced SR

bandwidth, we proceed to numerically investigate whether
the same nonlinear memory can also improve the perfor-
mance of a mechanical oscillator harvesting energy from
noise. To this end, we consider the nonlinear energy

harvester studied numerically by Cottone et al. [58] with
two modifications. First, we endow the nonlinearity with
memory. Second, for simplicity and generality, our energy
harvester is driven by Gaussian white noise ξðtÞ instead of
correlated noise. Our energy harvester has massm, loss rate
γ, and its displacement from equilibrium x satisfies

mẍðtÞ¼
�
aþb

Z
t

0

dsKðt− sÞxðsÞ2
�
xðtÞ− γ _xðtÞþDξðtÞ:

ð2Þ

The constants a and b define a DWP VðxÞ ¼ −ax2=2þ
bx4=4 in the limit τ → 0. D2 is the noise variance.
Calculation details are presented in the Supplemental
Material [55].
Figure 5(a) shows the root-mean-square (rms) displace-

ment xrms of our energy harvester with finite τ, divided by
the rms displacement x0rms of an energy harvester with
τ ¼ 0. Besides the change in τ, the two systems have
identical parameters. In the Markovian limit γτ ≪ 1,
xrms=x0rms ∼ 1 as expected. In the non-Markovian regime
γτ > 1, xrms > x0rms demonstrates memory-enhanced
energy harvesting. The enhancement is due to the existence
of limit cycles with large-amplitude oscillations exceeding
the distance between the minima of V [55]. The increase in
xrms=x0rms as τ → γ−1 from above indicates that the limit
cycles emerge from the interplay of different timescales (τ
and γ−1). Since somewhat similar limit cycles have been
observed in nonlinear oscillators with constant time delay
in their linear response [59], we analyze the relevance of
our noninstantaneous nonlinearity for different V.
Figure 5(b) shows xrms as a function of a. a < 0 gives a

single-well potential, while a > 0 gives a DWP with barrier
height growing with a [see Fig. 5(b) inset]. For the
Markovian case, x0rms first increases and then decreases
with a [58]. x0rms decreases for large a because the growing
potential barrier traps the dynamics to a single well within

(a) (b)

FIG. 4. (a) Calculated average number of switches per cycle
navg as a function of the modulation period Tmod (times the total
loss rate Γ), for fixed D ¼ 5Γ. Model parameters are as in Fig. 3.
(b) Measured navg as a function of Tmod at Vpp ¼ 100 V. The
average is computed over 1200 modulation cycles. Error bars are
smaller than data points.

(a) (b)

FIG. 5. (a) Enhanced rms displacement of an energy harvester
with noninstantaneous nonlinearity relative to the instantaneous
case, for variable memory time τ. (b) rms displacement versus a
for the instantaneous case and for γτ ¼ 4.8. Inset: potential VðxÞ
for a ¼ −1 (solid curve) and a ¼ 1 (dashed curve). Simulation
parameters: γ ¼ 0.016 Hz, m ¼ 15.5 kg, a ¼ 1, b ¼ 0.05,
D=γ ¼ 6.25. Error bars indicate 1 standard deviation.
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the fixed energy harvesting time. Therefore, effective
nonlinear energy harvesting is restricted to a narrow range
of potentials in the Markovian regime. In contrast, the
aforementioned limit cycles in the non-Markovian regime
preclude the trapping of the dynamics to a potential well.
This leads to a memory-enhanced energy harvesting for any
potential, and much greater enhancement for a DWP. In
particular, for a ¼ 1 (within the range considered in
Ref. [58]), we observe an order-of-magnitude increase in
the amount of energy harvested.
In summary, we demonstrated howmemory effects in the

nonlinearity render SR broadband. This result provides a
plausible explanation for the occurrence of various noise-
assisted processes at different frequencies within a single
noisy environment, as observed in nature. Indeed, no
natural system has a strictly instantaneous response.
Future work could investigate the effects of colored or
non-Gaussian noise, which enhance Markovian SR in
certain regimes [60–62]. Furthermore, we predicted that
memory effects in the nonlinearity can substantially
improve energy harvesting. This exciting prediction, with
potentially far-reaching technological implications, awaits
experimental confirmation. Beyond single-resonator
physics, our Letter paves the way for studying various
noise-assisted processes (e.g., noise-assisted transport [63–
66]) in nonlinear and non-Markovian cavity arrays. Such
arrays could be used to explore how memory effects can
render complex networks resilient against breakdown of
synchronization [67].
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