PHYSICAL REVIEW LETTERS 124, 153603 (2020)

Universal Scaling in the Dynamic Hysteresis, and Non-Markovian Dynamics,
of a Tunable Optical Cavity
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We investigate, experimentally and theoretically, the dynamics of a laser-driven cavity with non-
instantaneous effective photon-photon interactions. Scanning the laser-cavity frequency detuning at
different speeds across an optical bistability, we find a hysteresis area that is a nonmonotonic function of the
speed. In the limit of fast scans comparable to the memory time of the interactions, we demonstrate that the
hysteresis area decays following a universal power law with scaling exponent —1. We further demonstrate a
regime of non-Markovian dynamics emerging from white noise. This regime is evidenced by peaked
distributions of residence times in the metastable states of our system. Our results offer new perspectives for
exploring the physics of scaling, universality, and metastability, in non-Markovian regimes using arrays of
bistable optical cavities with low quality factors, driven by low laser powers, and at room temperature.
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Photons in a nonlinear cavity can undergo phase tran-
sitions akin to condensed matter systems. Since the seminal
works by Graham and Haken [1], Roy and Mandel [2], and
Scully [3], lasers have inspired numerous studies of phase
transitions of light. Recently, coherently driven cavities
supporting mean-field bistability—two steady states at a
single driving condition—have taken a central role in
studies of photonic phase transitions [4—17]. Progress in
this field has been recently accelerated by three develop-
ments. First, various nonlinear photonic resonators, and
novel methods to probe their dynamics, are becoming
available [8,9,13-15]. Second, fresh insights coupled to
novel theoretical methods have revealed intriguing non-
equilibrium phases of nonlinear cavities [4,7,10,12,18-21].
Third, there is increasing interest in performing optimiza-
tion [22-24] and computation [25] with bistable cavity
arrays.

Descriptions of bistable cavities commonly assume
instantaneous effective photon-photon interactions [26].
In the mean-field equation of motion for the intracavity
field a, this assumption manifests as a Kerr nonlinearity of
the form |a|?a [27]. The same cubic nonlinearity is found in
the Gross-Pitaevskii equation employed in atomic physics
[28-30], in the Ginzburg-Landau theory of superconduc-
tivity [31], in the Lugiato-Lefever equation of nonlinear
optics [32], and in the force derived from Goldstone’s
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Mexican hat potential V = —|¢|? + |¢|* for the scalar field
¢ at the heart of the Higgs mechanism [33]. In optics, strong
Kerr nonlinearities arise in semiconductor cavities where
exciton-exciton interactions are effectively instantaneous
[26]. A drawback of those cavities is that optical bistability
based on Kerr nonlinearities is typically observed only at
cryogenic temperatures. In contrast, several optical reso-
nators with slow but strong thermal nonlinearities have
routinely displayed bistability at room temperature [34—40].
As bona fide bistable systems, thermo-optical resonators
may open up new perspectives for classical Hamiltonian
simulation and computation [22-25,41]. However, the
influence of the thermal relaxation time on the hysteretic
and stochastic dynamics of bistable cavities remains to be
addressed.

In this Letter, we demonstrate signatures of scaling,
universality, and non-Markovianity, in the dynamics of a
laser-driven cavity with thermo-optical nonlinearity. This
nonlinearity is associated with noninstantaneous effective
photon-photon interactions, and it results in room-temper-
ature optical bistability at low laser powers P ~ 70 uW.
Scanning the laser-cavity detuning, we observe an optical
hysteresis influenced by the ratio of the scanning time to the
memory time of the interactions. In contrast to previous
reports of dynamic hysteresis in resonators with effectively
instantaneous interactions [13,42-44], we find a hysteresis
area that is a nonmonotonic function of the scanning speed.
Moreover, we discover a universal scaling of the hysteresis
area in the limit of fast scans. Our results elucidate how the
hysteretic behavior characterizing first-order phase transi-
tions, and the boundary between phases, dynamically
vanish when the nonlinearity has a finite memory time.
Furthermore, we evidence a new regime of non-Markovian
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dynamics characterized by peaked distributions of resi-
dence times in metastable states. Interestingly, this new
non-Markovian regime emerges under the influence of
white noise.

The inset in Fig. 1 illustrates our system: a tunable
Fabry-Pérot cavity driven by a 532 nm continuous wave
laser. The cavity is made by a concave and a planar mirror,
each comprising a distributed Bragg reflector (DBR) on a
glass substrate. The mirrors have a peak reflectance of
99.9% at 530 nm, which is the center of the stop band. The
concave mirror, with a diameter of 7 yum and a radius of
curvature of 12 um, was fabricated by milling a glass
substrate with a focused-ion beam prior to the deposition of
the DBR [45]. An image of the concave mirror is shown in
Supplemental Material [46]. Single-mode operation is
ensured by the strong lateral confinement and high reflec-
tivity of our mirrors.

The mirrors are aligned parallel to each other by
controlling all three translational (rotational) degrees of
freedom of the concave mirror with nanometer (micro-
degree) precision using a nanopositioner. The planar mirror
is mounted on another actuator used to scan the cavity
length. Optical excitation and collection are achieved
through 10x microscope objectives with numerical aper-
ture NA = 0.25. The cavity transmission is measured by a
photodetector and an oscilloscope. Setup details are in
Supplemental Material [46].

To endow the cavity with a nonlinear optical response,
we place olive oil inside [47-49]. Through z-scan mea-
surements, we estimated the nonlinear refractive index n,
of our oil to be ~ — 5 x 1078 cm? /W at 532 nm, consistent
with Ref. [49]. Figure 1 shows the transmitted intensity
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FIG. 1. Inset: Schematic of a planar-concave microcavity filled

with oil, as in our experiments. Main: Average hysteresis
measured by scanning A/I" [see Eq. (1)] at constant speed for
three driving powers P. Green (black) curves correspond to
opening (closing) the cavity. The overshoot enclosed by the
dotted circle emerges from noninstantaneous effective photon-
photon interactions. For clarity, we multiplied the measurements
for P = 20 uW by 2 and vertically displaced the other measure-
ments. Gray curves are calculations with Eq. (1) as explained in
the text.

through our oil-filled cavity averaged over 70 cycles
and at three laser powers. Green and black data points
correspond to opening and closing the cavity, respectively.
For low powers P < 20 uW, the cavity response is linear.
The gray curve over the measurements for P = 20 uW is a
Lorentzian fit, yielding a resonance linewidth of
0.104 £0.001 nm. For P = 70 uW, the transmission dis-
plays hysteresis (see arrows in Fig. 1) and bistability around
a mirror position of 0.1 nm. The power needed for
bistability in our cavity is similar to that in state-of-the-
art monolithic semiconductor cavities [13,15,50] but at
conveniently lower quality factors (by a factor of ~10) and
operating at room temperature instead of ~5 K. For
P =150 uW, the bistability and hysteresis range enlarge
as expected. In Supplemental Material, we estimate the
temperature rise in our cavity [46], based on the refractive
index of olive oil as a function of the temperature [51].

All measurements in Fig. 1 correspond to linear ramps of
the cavity length at 1.75 um/s. Already for this slow scan,
an overshoot followed by a slow decay of the transmitted
intensity arises when closing the cavity in the nonlinear
regime. This overshoot is due to the finite thermal relax-
ation time of the oil-filled cavity, which is absent in the
standard Kerr nonlinearity [35].

The standard Kerr model for the intracavity mean-field «
in a frame rotating at the driving frequency o is

ia = <—A - ig+ U(|a* - 1)>a+ iviF. (1)

A = w — wy is the laser-cavity detuning, with @, the
resonance frequency. U is the effective photon-photon
interaction strength mediated by the nonlinear medium
[26]. F is the driving amplitude. The total loss rate I =
K| + kp + 7 is the sum of the input-output leakage rates
through the two mirrors, k; ,, and the intrinsic cavity loss
rate y due to absorption. The steady states follow from
setting @ = 0 in Eq. (1).

We attempted to fit the steady-state photon density |a|?
calculated with Eq. (1) to the measurements for P =
150 pW in Fig. 1, with F as the only relevant adjustable
parameter [46]. " is fixed by the measured linewidth in the
linear regime. Furthermore, since Eq. (1) is a mean-field
model, the absolute values of |a|? and U are irrelevant; the
spectral line shape is determined by the ratio Ula|?/T.
Various line shapes can be obtained by varying F for fixed
U and I'. Thus, we adjusted F until obtaining the gray curve
plotted over the measurements for P = 150 yW. Solid and
dashed curves represent stable and unstable states, respec-
tively. Stability was analyzed as in Refs. [27,52]. The fit is
good far from resonance but deviates from the data near the
bistability. This deviation increases with the scanning
speed, as shown next.

We performed hysteresis measurements for P =
150 uW and various scanning speeds. A laser power far
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above the bistability threshold limits the influence of noise
on our measurements. Figure 2(a) shows average hysteresis
measurements for three speeds. Top to bottom, the speed is
v, 7v, and 49v, with v =0.74 um/s. The transmitted
intensity is shown versus A/I", determined by the mirror
position and resonance linewidth in Fig. 1. Figure 2(a)
shows how the hysteresis cycle changes with the scanning
speed. Increasing the speed from v to 7v makes the
overshoot broader and the hysteresis wider. Interestingly,
further increasing the speed to 49v makes the overshoot
broader but the hysteresis narrower. At 49v, the line shape
for both scanning directions resembles a Lorentzian, which
suggests approximately a linear response for fast scans
regardless of the power.

The behavior in Fig. 2(a) can be explained by consid-
ering the finite heating and cooling time of our oil-filled
microcavity; this makes effective photon-photon inter-
actions noninstantaneous. Therefore, we modify Eq. (1)
by letting

Ulla(r)]* = 1] - /Ot dsK(t = s)[la(s)? = 1] =w(r). (2)

with the kernel function defined as K(t) = (U/7)e™"/*. The
memory time of the interactions, z, corresponds to the
thermal relaxation time of our microcavity. Here, we have
followed the prescription of Mori [53] and Hénggi [54] for
dealing with finite-time interactions. However, whereas
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FIG. 2. (a) Measurements and (b) calculations of average

hysteresis when A/T" is scanned at three different speeds and
constant power. The slowest scanning speed is v = 0.74 um/s in
(@) and f = 5.97 x 107°T2 in (b). The power is P = 150 uW in
(a) and F = 1.52F ., with F, the critical amplitude needed for
bistability, in (b); the power in (a) also corresponds to
F = 1.52F .. Measurements are averaged over 70 realizations.
Dashed lines indicate the range of A/I" corresponding to the
thermal relaxation time 7.

Mori-type equations involve noninstantaneous dissipation,
we introduced noninstantaneous nonlinearity.

Making the substitution (2) in Eq. (1) yields an integro-
differential equation, which can be conveniently (for
numerical simulation) written as two coupled differential
equations:

ia(r) = <—A - ig + w(t)> alt) + iy F.  (3a)

W(t) = {Ufla()? = 1] = w(1)}/z.

Equations (2) and (3) imply that the state of the system
depends on its entire past, weighted by the memory kernel
K(t). Thus, interactions are nonlocal in time. Note that
when a(t) is constant and can be taken out of the integral in
Eq. (2), we recover Eq. (1). Hence, steady states are
unchanged by K ().

Figure 2(b) shows dynamic hysteresis calculations using
Egs. (3), with the same parameter values used for the
steady-state calculations in Fig. 1. As for the experiments,
we show scanning speeds a factor of 7 apart. The model
reproduces all features observed in experiments. In the
calculations, we set the memory time to 7 = 10T and the
slowest scanning speed to f =5.97 x 107°T? [46].
Relative to the experiments, the value of 7z is smaller
(details ahead) and the speed is larger. We rescaled time-
scales to avoid unnecessarily long and memory-expensive
calculations. Our mean-field calculations can be directly
compared to experiments, because we respect the hierarchy
of timescales in experiments: I'"! < 7 < T, with T, the
scanning time across the bistability. Moreover,the ratio
T,/ is similar for experiments and calculations.

In Fig. 3(a), we plot the experimental average hysteresis
area A = [ [Iny — I, |dt, with I 4 and I the transmitted
intensity when A increases and decreases, respectively. 7 is
the driving period, which exceeds T',. Figure 3(b) shows the
corresponding calculations based on Egs. (3). In both
measurements and calculations, A peaks at a scanning speed
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FIG. 3. (a) Measured and (b) calculated hysteresis area versus
scanning speed, in the same dynamic range. Measurements are
averaged over 70 realizations. Gray data points indicate the
speeds presented in Fig. 2. Gray lines are power laws with
exponent —1.
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corresponding to the crossover between two regimes. For
slow scans, A increases with the speed, because the cavity
cannot adiabatically follow A(f). This regime of dynamic
hysteresis and the corresponding scaling laws for A have
been previously explored [13,42,43,55]. The second and
new regime we investigate comprises speeds above the value
for which A peaks. Therein, A decays with increasing speed,
because the nonlinearity does not have time to build up
during the scan. At high speeds, the dynamics of the system
transition from nonlinear to linear. The number of attractors
changes from two to one.

Our measurements are limited to scanning speeds
between ~0.5 and ~40 pm/s. The upper speed limit is
determined by the resonance frequency of our piezoelectric
actuator. On the other end, we limited our measurements to
speeds above 0.5 ym/s to avoid low-frequency mechanical
noise in our setup. Despite these limitations, the good
agreement between experiments and calculations encour-
ages us to use our model to interpret the physics over an
extended speed range.

In Fig. 4, we calculate A versus the scanning speed for
different F. At low speeds, the driving conditions deter-
mine the scaling of A [13]. At high speeds, A decays
following a power law with scaling exponent —1.
Interestingly, this scaling behavior is universal; i.e., the
slope of the gray lines fitted to the data in Fig. 4 is
independent of the system parameters. To assess whether
our experiments display such scaling behavior, in Fig. 3(a)
we plot a power law with exponent —1 over our high-speed
data points. The fit suggests that we reached the onset of the
—1 power law regime. For comparison, we plot a —1 power
law on top of the corresponding calculations in Fig. 3(b). In
this case, the power law was fitted to the calculations in
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FIG. 4. Calculated hysteresis area versus the scanning period 7.
Each symbol corresponds to a different driving amplitude F
relative to the critical amplitude needed for bistability F.. Gray
lines are power law with exponent —1. Inset: Intracavity photon
number |a|> versus A/T for the period indicated by the filled
circle in the main panel.

Fig. 4 over an extended range. As in experiments, we
observe the onset of the —1 power law within the restricted
speed range in Fig. 3(b).

Recent calculations [43] and experiments [13] on hys-
teretic cavities with instantaneous interactions observed a
universal scaling of A at low speeds due to quantum
fluctuations. Coincidentally, the scaling exponent found
in Refs. [13,43] is also —1, as in the present work. However,
the scaling behavior here reported has an entirely different
origin (i.e., due to noninstantaneous interactions and
unrelated to fluctuations) and arises in the opposite regime
of fast scans.

Next, we demonstrate a new regime of non-Markovian
dynamics emerging from the interplay of noninstantaneous
effective photon-photon interactions and white noise in the
laser amplitude and phase. For fixed F and A/T" within the
bistability, ||?> randomly switches between metastable states
as shown in Supplemental Material [46]. Based on many
long trajectories |a(t)|?, we calculate residence time dis-
tributions (RTDs) in the metastable states. For example,
Figs. 5(a) and 5(b) show RTDs in the lower metastable state
for two different 7. For 7 < I""!, the dynamics is Markovian,
and RTDs decay exponentially as in Fig. 5(a). For 7 > ',
RTDs become increasingly peaked with increasing z. The
deviation from exponential decay [see the unfitting line in
Fig. 5(b)] evidences non-Markovian dynamics [56]. Non-
Markovian dynamics are usually associated with noninstan-
taneous system-environment interactions (dissipation) and
with colored noise in the driving force according to the
fluctuation-dissipation relation [53,54,57-60]. In contrast,
we demonstrate non-Markovian dynamics emerging from
noninstantaneous effective photon-photon interactions,
which suppress fast switchings between metastable states
regardless of the noise spectrum. Experimentally, our system
also experiences colored noise in A due to mechanical
fluctuations of our mirrors with a high-frequency cutoff. In
Supplemental Material, we show how this noise influences
single-shot dynamic hysteresis measurements [46].

Finally, we estimate the experimental thermal relaxation
time by comparing hysteresis cycles in Figs. 2(a) and 2(b).
Since in theory we set 7 and the scanning speed for A/T", we
can convert 7 to a range of A/T" and vice versa. In Fig. 2, we
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FIG. 5. Residence time distributions in the lower metastable

state for different z. Dashed lines are exponential fits. The peaked
distribution in (b) is indicative of non-Markovian dynamics.
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indicate the A /T range corresponding to = by dashed lines. As
expected, the A /T range corresponding to z increases with the
speed. For the lowest speed f, T}, > 7 and the overshoot
observed when A decreases is the main feature unanticipated
by the standard Kerr model. For 7f, T, ~ = and the overshoot
is almost as wide as the bistability. For 49f, T}, < 7 and we
have a close-to-linear response. Experiments in Fig. 2(a)
display similar behavior as calculations in Fig. 2(b). Hence, in
the same fashion, we indicate the A /T" range corresponding to
7 by dashed lines in Fig. 2(a). Based on this range of A/I" and
our knowledge of the experimental scanning speed, all three
measurements in Fig. 2(a) are consistent with a relaxation
time 7 = 16 = 1 pus.

In summary, we demonstrated signatures of scaling,
universality, and non-Markovianity, in the dynamics of a
laser-driven cavity with thermo-optical nonlinearity.
Because of noninstantaneous effective photon-photon
interactions, the optical hysteresis area is maximized at a
finite scanning speed. At high speeds, we discovered a
universal scaling behavior through which the hysteresis
characterizing first-order phase transitions vanishes. Our
findings suggest that oil-filled cavities are promising for
exploring critical phenomena and new universality classes
in systems with memory [61,62]. For slow or fixed driving
conditions, our system exhibits peaked RTDs and non-
Markovian dynamic hysteresis. This suggests that our
system could be used to test theorems of nonequilibrium
fluctuations [63], entropy production [64], and speed limits
[65] in non-Markovian regimes. Beyond single-cavity
physics, our observation of optical bistability in oil-filled
cavities paves the way for realizing bistable coupled
cavities [66] and cavity arrays at room temperature.
Such arrays could be used to probe Ising-type phase
transitions [10] or to solve combinatorial optimization
problems [22-24].
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