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Nonreciprocity and zero reflection in nonlinear cavities with tailored loss
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We demonstrate how to tailor the losses of nonlinear cavities in order to suppress their reflection and enhance
their nonreciprocal transmission. We derive analytical expressions predicting the existence of zero-reflection
channels in single and coupled nonlinear cavities, depending on the driving frequency and loss rates. While
suppressing the reflection from a single cavity imposes a stringent condition on the input-output leakage rates,
we demonstrate that this condition can be significantly relaxed in systems of coupled cavities. In particular,
zero-reflection and nonreciprocity can be achieved across a range of driving frequencies in coupled cavities
by tuning the output leakage rate alone. Numerical calculations based on the driven-dissipative Gross-Pitaevskii
equation, usually employed to describe microcavity polaritons, reveal the spatial phenomenology associated with
zero-reflection states and provide design guidelines for the construction of nonlinear optical isolators.
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Lorentz reciprocity, which in the absence of gain and loss
is equivalent to time-reversal symmetry [1], states that the
relationship between source and detector remains unchanged
when their positions are exchanged. Reciprocity holds for
linear time-invariant systems with symmetric permittivity and
permeability tensors [2]. Systems not constrained by Lorentz
reciprocity are of interest in many fields, particularly in pho-
tonics since they may function as optical diodes or isola-
tors [3–21]. Figure 1 illustrates two main features of an ideal
optical isolator: light propagates one way only, and reflection
at the input port is zero.

Recently, many efforts have concentrated on the design of
compact magnetic-free nonreciprocal systems. One approach
to nonreciprocity is based on dynamic modulation—a depar-
ture from the time-invariance assumption on which Lorentz
reciprocity relies [5,9,13,22–25]. An alternative approach to
nonreciprocity is based on the combination of nonlinear-
ity and spatial symmetry breaking [3,6,11,12,18,19,21,26].
While every approach to nonreciprocity offers benefits and
limitations [27,28], a common drawback of many approaches
is that reflection from the input port tends to be deleteriously
high at nonreciprocal conditions; see, for example, Table 1
of Ref. [7], comparing insertion losses and nonreciprocity for
several systems.

Here we take a different approach to simultaneously
achieve nonreciprocity and zero reflection from the input
port of dissipative cavities with Kerr-type nonlinearity. Our
approach relies on tailoring the leakage rates of the cavities
to their input-output ports. In contrast to previous approaches
combining Fano and Lorentzian resonances with a suitable
delay line in-between [21], our method works for coupled
cavities even when their eigenfrequencies and intrinsic loss
rates are equal. To benchmark our results, we first provide
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a detailed analysis of nonreciprocity in a single nonlinear
cavity with separate input-output ports. In the presence of
intrinsic cavity losses, nonreciprocity with zero reflection
can only be achieved for a particular value of the input-
output leakage rate difference. As we will show, this stringent
condition can be relaxed in systems of coupled cavities. We
find analytical expressions for the conditions giving zero
reflection in nonreciprocal systems of single and coupled
cavities. In addition, through numerical calculations based on
the driven-dissipative Gross-Pitaevskii equation, we present a
design for a realistic semiconductor polariton system where
our predictions can be experimentally tested.

I. SINGLE NONLINEAR CAVITY

Figure 1(b) illustrates the system studied in this section:
a single-mode cavity with resonance frequency ω0, intrinsic
loss rate γ , and a χ3 Kerr-type nonlinearity leading to photon-
photon interactions of strength U . The cavity is coupled to
two separate input-output ports at rates κ1,2. A monochromatic
field of frequency ω and amplitude F drives the cavity through
port 1. Within the mean-field approximation neglecting quan-
tum fluctuations [29,30], the cavity field amplitude ψ obeys
the following equation of motion (h̄ = 1):

iψ̇ =
(

ω0 − i
�

2
+ U |ψ |2

)
ψ + i

√
κ1Fe−iωt , (1)

where � = γ + κ1 + κ2 is the total loss. The steady-state
solutions are found by setting ψ̇ = 0 and inserting the ansatz
ψ (t ) = ψe−iωt in Eq. (1). For convenience, we move to a
frame rotating at the driving frequency ω. In this rotating
frame, the detuning � = ω − ω0 is the relevant energy param-
eter and Fe−iωt → F . The steady-state field is then a solution
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FIG. 1. (a) Ideal features of an optical isolator: zero reflection
and high transmission for forward propagation (top panel), and zero
transmission for backward propagation (bottom panel). (b) Sketch
of a single-mode cavity with Kerr-type nonlinearity, intrinsic loss γ ,
and coupled to two separate input-output ports at rate κ1,2. (c) Sketch
of two coupled cavities [each one as in (b)] with coupling energy J .
In both (b) and (c), the resonant system is driven from the left (port
1) by a monochromatic field of frequency ω and amplitude F . For
testing the reciprocity of the system, the driving field is switched to
the right (not shown).

to the following algebraic equation:

0 =
(

−� − i
�

2
+ U |ψ |2

)
ψ + i

√
κ1F. (2)

Once ψ is obtained, the transmittance T and reflectance R
can be calculated as follows:

T1 =
∣∣∣∣
√

κ2ψ

F

∣∣∣∣
2

= κ1κ2

(� − Un)2 + �2/4
, (3)

R1 =
∣∣∣∣F − √

κ1ψ

F

∣∣∣∣
2

= 1 − κ1(κ2 + γ )

(� − Un)2 + �2/4
, (4)

with n = |ψ |2 the number of photons in the cavity. The
subscript “1” of R and T indicates that the cavity is driven
through port 1. Similar expressions can be obtained for R2

and T2 by letting 1 → 2 and 2 → 1, and solving Eq. (2) again
for n. Notice that if γ �= 0, R + T < 1.

While Eqs. (3) and (4) seem to be symmetric in κ1 and
κ2, the response of the system is not the same when driven
through port 1 and port 2 because of the nonlinear term Un.
Indeed, for κ1 �= κ2, driving through the ith port instead of
through the j th ports rescales the effective drive amplitude by√

κi/
√

κj . For a fixed F , this results in a different n when
driving through ports 1 and 2. Consequently, the cavity trans-
mission is nonreciprocal when the input ports are switched.

Notice that whereas the transmittance is simply propor-
tional to |ψ |2, the reflectance is determined by the interference
between the driving field and the cavity field. In particular, R1

vanishes when F = √
κ1ψ , corresponding to total destructive

interference between the two fields. Substituting this relation
in Eq. (2), we find two necessary conditions for R1 = 0:

κ1 = κ2 + γ = �/2,

F 2
c = κ1�/U, (5)

with Fc the critical driving amplitude for which R1,c = 0.
Hereafter, the quantities evaluated at F = Fc will have the “c”
subscript. If the conditions in Eq. (5) hold, the transmittance is
T1,c = κ2/κ1. This leads to the following conclusion: unitary
transmission requires γ = 0 and κ1 = κ2. The latter would
imply that the device is mirror-symmetric and, therefore, it
would not show any nonreciprocity. Hence, in this configu-
ration, either unitary transmission or nonreciprocity can be
achieved, but not both simultaneously.

To quantify the nonreciprocity, we need to define an appro-
priate figure of merit. Nonreciprocity has been previously as-
sessed through the ratio of forward-to-backward transmission
at a fixed intensity [4,7]. Alternatively, an isolation intensity
range can be defined as the ratio of input intensities from
opposite propagation directions that lead to the same trans-
mission [21]. Applying these definitions to nonlinear systems
exhibiting bistability or multistability is nontrivial. A bistable
cavity sustains two stable steady states with different photon
numbers at the same driving conditions [31]. The observed
steady state depends on the driving history of the system;
hysteresis emerges as a driving parameter is scanned across a
bistability [32,33]. Since T cannot be uniquely defined within
the hysteresis range, the isolation ratio is also not uniquely
defined. In principle, this ambiguity can lead to asymmetric
forward-to-backward transmission at fixed driving conditions
if the system is biased into different states, even for symmetric
systems. To avoid this ambiguity, we propose to evaluate T
not only at equal F , but also at equal driving histories. For
instance, if the cavity is driven across a hysteresis cycle in
the forward direction, then the same driving protocol should
be followed in the backward driving direction. For bistable
cavities, this criterion gives the “worst possible” isolation ratio
(I ) as follows:

I = T1,max

T2,max
. (6)

T1,max and T2,max are the maximum transmittance one can
obtain when driving the system from port 1 or 2, respectively.
For κ1 = κ2, one finds using Eq. (3) that I = 1, i.e., the
system is reciprocal. Meanwhile, for asymmetric systems
(κ1 �= κ2) with more than one possible forward-to-backward
transmission ratio, our definition of I gives the value closest
to 1, i.e., the worst possible isolation ratio for a given input
power.

Let us now analyze the nonreciprocal behavior of a single
bistable cavity with κ1 �= κ2. For repulsive interactions U > 0,
bistability occurs for � >

√
3�/2. Within the hysteresis cycle

range, the intracavity photon number n is constrained by n− �
n � n+, with n± = (2�)/(3U ) ± (6U )−1

√
4�2 − 3�2. The

black (gray) shaded areas in Fig. 2(a) enclose the values of
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FIG. 2. Calculations for a single cavity as depicted in Fig. 1(b),
with U = 0.005γ , κ1 = �/2, κ2 = �/3, and γ = �/6. (a) Black
(gray) curves enclose the range of normalized driving power F 2/�

and normalized laser-cavity detunings �/�, with � = ω − ω0, giv-
ing rise to bistability when driving through port 1 (port 2). The
inset shows the largest power fluctuation (δF/Fc )2 the system can
withstand without losing its nonreciprocity by falling from the bista-
bility branch with the largest number of photons; Fc is the critical
driving amplitude at which R1 = 0. (b), (c), and (d) Number of
photons in the cavity, reflectance, and transmittance, respectively,
all for �/� = 3. The vertical black line in (c) and (d) indicates the
critical drive power for which the reflectance vanishes, as predicted
by Eq. (5).

F 2/� and �/� where bistability takes place when driving
through port 1 (port 2). Here and throughout the paper, the
same color code will be used for quantities computed when
driving through the two ports. The shape of the bistability
region is the same when driving through ports 1 and 2, but
this region is shifted to higher F when driving through port 2
because κ2 < κ1.

In Fig. 2(b) we plot n versus F 2/� for a weakly nonlinear
cavity U � γ at the detuning � = 3�, where the system
displays a bistable behavior. The stability of the solutions
was assessed by evaluating the spectrum of small fluctuations
around the steady state [29]. Unstable solutions are indicated
by gray dashed lines. As we have set κ1 = �/2 = κ2 + γ to
satisfy Eq. (5) for the calculations in Fig. 2(b), at fixed F

and for finite γ , the effective driving strength through port
1 is greater than through port 2. Consequently, the bistability
range is shifted in F and the transmission is nonreciprocal.

Figures 2(c) and 2(d) show R1,2 and T1,2, respectively,
corresponding to the steady-state solutions in Fig. 2(b). Notice
in Fig. 2(c) the sharp dip in R1. To access this state, one
needs to apply the drive protocol sketched in Fig. 2(b) to reach
the high n state very close to the bistability falling edge (not
jumping down) when driving through port 1. R1 = 0 at the
power indicated by the dashed line in Fig. 2(c), which is the

critical drive amplitude Fc = κ1�/U predicted by Eq. (5). A
finite R1 is observed in the numerical calculations because of
the finite step size in F . Figure 2(d) shows that for R1 = 0,
T1 = 1/2 and T2 � 1: driving through port 2 at the same
F can only set the system in the low-n branch, such that
I ≈ 36. In this regime, starting from Eq. (3), we can deduce
an approximate formula for the isolation ratio at Fc,

Ic ≈ 1 + 4�2

�2
, (7)

where we used the fact that T2,c ≈ κ1κ2/(�2 + �2/4) because
the term Un is negligible in the low-n steady state. Interest-
ingly, in the regime we are considering in which the driving
field intensity is in between the two down-falling bistability
edges shown in Fig. 2(b), the I does not depend on the relative
values of κ1,2 and γ ; it only depends on the ratio of the
detuning � to the total loss �.

Vanishing R1 and nearly unitary transmission can be
achieved in the limit of arbitrarily small but finite γ as long
as κ1 = κ2 + γ . However, this makes it increasingly difficult
to unidirectionally bias the system into the desired bistable
state because the difference between the left- and right-driven
bistability threshold diminishes when γ vanishes. A similar
argument holds for the isolation ratio. Even if Ic can be
made arbitrarily high by increasing �/�, the difference δF

between Fc and the value of F corresponding to the falling
edge of the high n steady state becomes increasingly small.
Consequently, tiny fluctuations in the input power (∝F 2) have
an increasing probability of making the cavity switch to the
low n steady state where there is poor isolation and high
reflectance. A relevant figure of merit for practical implemen-
tations is the ratio (δF/Fc )2. This ratio quantifies the largest
power fluctuation that the system can withstand without los-
ing its nonreciprocity. We plot this quantity in the inset of
Fig. 2(a) as a function of �/�. For �/� = 3 as considered in
Figs. 2(b)–2(d), power fluctuations of 0.5% will spoil both the
isolation and low-reflectance of the system.

We now seek an expression for the maximum transmission
T1,∗ (or correspondingly, minimum reflection R1,∗) which can
be achieved at a certain κ1,2 and γ , while driving through
port 1. From Eqs. (3) and (4), we see that this is achieved
for � = Un. The drive amplitude F∗ yielding T1,∗,R1,∗ can
also be determined by plugging the latter condition in Eq. (2).
We get

T1,∗ = 4κ1κ2

�2
, R1,∗ = (γ − κ1 + κ2)2

�2
,

F 2
∗ = �2

4

�

κ1U
. (8)

The isolation ratio can be obtained by computing T2 at the
drive amplitude F∗. These results, together with Eq. (7), com-
pletely determine the best achievable performance in terms of
R, T , and I , as well as the driving amplitude at which this
condition manifests, for any set of parameters (�, U, κ1,2, γ ).

To illustrate how the performance degrades when departing
from the condition κ1 = κ2 + γ , we compute and report in
Fig. 3 R1,∗, T1,∗, and I as a function of κ2 and � for
γ = 0.02 meV and κ1 = 0.06 meV. These are experimentally
relevant parameters as explained later. The horizontal dashed
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(a) (b) (c)
log10(R1,∗) log10(IR1,∗) T1,∗

Reflectance Isolation ratio Transmittance

FIG. 3. Calculations for a single cavity as depicted in Fig. 1(b), with U = 0.005γ , γ = κ1/3, and κ2/κ1 = 2/3. (a), (b), (c) Reflectance,
isolation ratio, and transmittance in color scale as a function of the leakage rate ratio κ2/κ1 and normalized laser-cavity frequency detuning
�/κ1. The horizontal dashed line indicates the value of κ2/κ1 leading to zero reflection, as predicted by Eq. (5).

line in all panels indicates the value of κ2 for which R1 = 0.
Increasing κ2 above this ideal value degrades the system in
terms of R1,∗ and I . Decreasing κ2 below the ideal value
improves I but degrades the performance both in terms of
R1,∗ and T1,∗. In contrast, as we will see in Sec. II, tuning
κ2 in coupled cavities allows R1 = 0, high T1, and high I at
variable values of �.

In summary, for single Kerr resonator, either unitary trans-
mission (γ = 0) or nonreciprocity can be achieved. If we
allow finite losses (γ �= 0) and the mirror symmetry of the
system is broken (κ1 �= κ2), a nonlinear steady state with
R1 = 0 and an isolation ratio growing quadratically with
�/� [see Eq. (7)] can be achieved. However, to achieve this
effect, strict conditions have to be met for the ratios of the
input-output couplings κ1,2 with respect to the losses γ , which
may limit the performance of realistic implementations of the
scheme. Such strict conditions can be relaxed in systems of
two coupled resonators.

II. TWO COUPLED NONLINEAR CAVITIES

In this section, we consider two mutually coupled cavities
as depicted in Fig. 1(c). Notice that ports 1 and 2 are now
connected to different cavities. As we will show, this allows
relaxing the stringent conditions on the loss rates leading to
zero reflection at the input port while still maintaining high
nonreciprocity.

In a frame rotating at the driving frequency ω, the equations
for the coupled cavity fields are

(
−�1 − i

�1

2
+ Un1

)
ψ1 − Jψ2 = −i

√
κ1F, (9)

(
−�2 − i

�2

2
+ Un2

)
ψ2 − Jψ1 = 0 (10)

with ψj the field, �j = ω − ωj the laser-cavity detuning,
�j = γ + κj the total loss, and nj = |ψj |2 the number of
photons in the j th cavity (j = 1, 2). J is the coupling between
the two cavities. Calculating ψj (see Appendix B for details)
allows us to get the steady-state photon numbers nj and to
assess the stability of the steady states [34]. For brevity, we

omit details of the stability analysis, which can be found in
Ref. [34]. We only recall that the coupled equations (9) and
(10) admit multiple steady states at certain driving conditions,
i.e., multistability. Each state can be classified as (i) stable,
(ii) single-mode unstable, or (iii) parametrically unstable [34].
Here, we are interested in finding stable steady states leading
to minimum reflection at the input port and high transmission.

The transmittance T and reflectance R, when driving
through port 1, can be defined as follows:

T1 =
∣∣∣∣
√

κ2ψ2

F

∣∣∣∣
2

, (11)

R1 =
∣∣∣∣F − √

κ1ψ1

F

∣∣∣∣
2

. (12)

Comparing Eqs. (11) and (12) with Eqs. (3) and (4) reveals an
important feature of coupled cavities with respect to a single
cavity. The cavity field responsible for R1, namely ψ1, is
not the field responsible for maximizing T1, namely ψ2. This
feature opens new possibilities to achieve R1 = 0 and high
nonreciprocity over extended parameter ranges.

Next, we pose the following question: Given a pair of
identical cavities with eigenfrequency ω0, intrinsic loss γ , and
mutual coupling J , for which values of the parameters � =
�1 = �2 and κ1,2, can we observe R1 = 0? Our question is
relevant to optical experiments, where � and κ1,2 are typically
external parameters that can be adjusted in situ. � can be
adjusted with a tunable laser, while κ1,2 can be adjusted in
evanescently coupled cavity-waveguide systems by tuning the
cavity-waveguide distance, for example.

In Appendix B we address the above question by de-
riving analytical expressions guaranteeing the existence of
a zero-reflection state. Unlike for a single cavity, we find
two solutions giving R1 = 0 for coupled cavities. One of
these solutions is equivalent to Eq. (5) (details ahead). The
additional solution guaranteeing R1 = 0 in the coupled cavity
case reads

�2 = (κ1 + κ2)2

(
J 2

(κ1 − γ )(κ2 + γ )
− 1

4

)
. (13)
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(a)

(b)

FIG. 4. Reflectance (a) and transmittance (b) calculated for two
coupled cavities as depicted in Fig. 1(c), with J = 0.1 meV, γ =
0.02 meV, U = 0.07 μeV, κ1 = 0.06 meV, and κ2 = 0.4494 meV.
Black and gray curves correspond to driving through port 1 and port
2, respectively. The dashed line in both panels indicates the critical
driving power for which the reflectance vanishes. The inset of (a) is
a zoom into the reflectance dip.

In the derivation of Eq. (13), we also find that
R1 = 0 requires n2�2 = n1�̃1, with �̃1 = κ1 − γ . This result
demonstrates the key role that the losses play in achieving
R1 = 0 by controlling the power flow through the system and
fixing the relative number of photons in the two cavities.

Next, we numerically solve Eqs. (9) and (10) and calculate
R1 and T1 as a function of F 2/�. Figures 4(a) and 4(b)
show R1 and T1 for values of J , U , γ , and κ1,2, given in
the caption. These values correspond to an experimentally
realizable configuration to be discussed in the next section.
The detuning was set to � = 4.513κ1 to satisfy Eq. (13) in
combination with the other parameters.

Figure 4(a) displays a sharp dip in R1 at F 2/� = 389.3.
The inset of Fig. 4(a) shows a zoom into the dip, evidencing
that R1 is suppressed by ∼23 orders of magnitude, limited by
machine precision. At the driving power for which R1 = 0,
nonreciprocity with I = 13 is obtained [see Fig. 4(b)]. The
small jump in R2 and T2 around F 2/� = 1450 in the main
panel is associated with an additional bistability. Cascades of
bistabilities and multistabilities emerging when driving one

of two coupled cavities have been previously studied [34] and
experimentally observed [35,36].

Next, we assess R, T , and the isolation ratio I [Eq. (6)]
for systematic variations of the coupled cavity system param-
eters. To this end, we first calculate R and T over a wide
range of F for a system with fixed �, U , κ1,2, γ , and J .
We perform this calculation first driving through port 1 and
then driving through port 2. The F -scan starts at low values
for which the system is in the linear regime, and ends at
high values that are well above all nonlinear thresholds. We
then search for R1,∗, i.e., the minimum value of R1, and
estimate the corresponding value of the transmission T1,∗. We
also evaluate I at the driving amplitude F∗ corresponding to
R1,∗. The results of similar calculations for various � and
κ2, keeping κ1 = 0.06 meV and J = 0.1 meV constant, are
presented in Fig. 5. Figures 5(a)–5(c) correspond to a system
with γ = κ1/3, and Figs. 5(d)–5(f) correspond to γ = 0. The
dark regions in Figs. 5(a) and 5(d) indicate the parameters for
which the reflectance vanishes.

Besides the numerical results, all panels of Fig. 5 display
two analytical predictions for R1 = 0. The green dashed
curve, which depends on �, follows from Eq. (13), with
κ1 = 0.06 meV and J = 0.1 meV; this frequency-dependent
solution, enabling R1 = 0 at any κ2, is exclusive to coupled
cavities. In contrast, the gray dashed line independent of �

in all panels of Fig. 5 corresponds to a solution in which
the two cavities effectively behave as a single one. In this
case, the reflectance minimum takes place at κ2 = κ1 − 2γ ,
which can be recognized as the counterpart of Eq. (5) for a
single cavity if one lets γ → 2γ considering that we have
twice the intrinsic losses in the effective single cavity. Overall,
our analytical and numerical results demonstrate that R = 0
can be achieved across a wide range of κ2 by tuning �. This
tunability is impossible to achieve with a single cavity, where
R = 0 only occurs for κ1 = �/2 regardless of �.

We proceed to analyze the influence of γ on I by com-
paring Figs. 5(b) and 5(e). Notice in Fig. 5(e) that I ≈ 1
(black region in the color plot) at the values of κ2 and � for
which R1 = 0 along the green dashed line. Thus, for γ = 0
there is negligible isolation when R = 0. In contrast, high
I and R1 = 0 can be simultaneously achieved for a broad
range of κ2 when γ �= 0. This is evidenced by the overlap of
the green dashed line and the less dark region of the color
plot in Fig. 5(b). These results highlight how adding intrinsic
loss γ offers the possibility to tune the parameters (κ2,�) so
as to achieve simultaneously suppressed reflectance and high
nonreciprocity.

Simultaneously achieving high I and R1 = 0 by setting
γ �= 0 and tuning κ2 requires J > κ1, γ [37]. This result
follows from Eq. (13), which for J < κ1, γ leads to purely
imaginary detunings �. Physically, J < κ1, γ means that the
two cavities act as if they are being decoupled. Consequently,
the R1 = 0 solution that is only present in coupled cavities
vanishes. In contrast, for J > κ1, γ there is a finite range of
κ2 for which � is real; these are physically realizable R1 = 0
states. Further increasing J above κ1, γ enlarges the range of
κ2 and � over which high I and R1 = 0 can be simultane-
ously achieved. Note that while J needs to be greater than
both κ1 and γ for coupled cavity physics to emerge, J can
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(f)
log10(R1*)

γ = 0

(c)
γ = Κ1/3

log10(IR1*) T1*

log10(R1*) log10(IR1*) T1*(a)

(d) (e)

(b)

FIG. 5. Calculations for two coupled cavities as depicted in Fig. 1(c), with J = 0.1 meV, U = 0.07 μeV, and κ1 = 0.06 meV. In panels (a),
(b), and (c) γ = κ1/3, and in panels (d), (e), and (f) γ = 0. Panels (a) and (d) show the minimum reflectance R1,∗ observed at any driving power
F 2. Panels (b) and (e) show the isolation ratio I at the same power for which R1,∗ was observed. Panels (c) and (f) show the transmittance
T1,∗ of the same state associated with R1,∗. Note that R1,∗ and I are plotted in log scale, while T1,∗ is plotted in linear scale. The green dashed
curves in all panels are analytical predictions for zero reflection from Eq. (13); this state is exclusive to coupled cavities. The gray dashed
curves in all panels are analytical predictions for zero reflection based on Eq. (5), but letting γ → 2γ because we have two dissipative cavities;
this state corresponds to effective single-cavity behavior.

be much less than the total losses 2γ + κ1 + κ2 provided that
Eq. (13) is satisfied.

The ability to simultaneously achieve high I and R1 = 0
by setting γ �= 0 and tuning κ2 comes at the expense of
a degraded total transmission, as Figs. 5(c) and 5(f) show.
Whereas unitary transmission can be achieved for γ = 0
[Fig. 5(f)], for γ = κ1/3 [Fig. 5(c)] the transmittance is lim-
ited to a maximum value around 0.75. The tradeoff between
unitary transmission and nonreciprocity for two identical
coupled cavities also exists for a single cavity. However, by
introducing intrinsic loss γ in the coupled cavity system, high
transmittance is traded for the ability to tune the parameters
(κ2,�) leading to R1 = 0. In contrast, giving away high
transmittance through a single cavity by introducing intrinsic
loss does not enable one to tune any of the parameters to
achieve R = 0.

In this section, we have focused on two coupled nonlinear
cavities that are identical. One may wonder to what extent
the physics of nonreciprocity and zero reflection is robust
to deviations in the resonance frequencies of the cavities,
which may result from fabrication imperfections. When these
deviations are much smaller than the cavity loss rates and
the intercavity coupling, the physics remains qualitatively the
same. Such systems of practically identical strongly coupled
highly nonlinear optical cavities have already been realized
in the laboratory [36,38]. The more general case in which

�1 �= �2 has the only result of changing the driving frequency
where the zero reflection happens by an amount proportional
to the energy difference between the bare cavity resonances.
This additional degree of freedom can actually be used to
further enhance nonreciprocity, as theoretically demonstrated
by Sato and co-workers [39,40].

III. DRIVEN-DISSIPATIVE GROSS-PITAEVSKII
CALCULATIONS

In this section we propose a design, based on polaritons in
semiconductor microcavities, for the experimental implemen-
tation of nonreciprocity and zero reflection using nonlinearity
in coupled resonators. Polaritons are quasiparticles arising
from the strong coupling between excitons confined in a quan-
tum well and photons in a cavity [41]. Polaritons mutually
interact due to their excitonic component, giving rise to strong
Kerr-type optical nonlinearities [42]. Several techniques are
known for confining polaritons and for coupling confined
polariton modes [36,43–48].

We consider a microstructure schematically represented in
Fig. 6, which could be fabricated via deep etching of a pla-
nar microcavity. The microstructure is made of two coupled
pillars linked in an asymmetric way to a one-dimensional
waveguide via two constrictions. This 2D structure can be
mapped to an effective 1D potential for polaritons. We make
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FIG. 6. (a) Sketch of the proposed implementation of coupled nonlinear cavities with asymmetric coupling to external ports based on
etched polariton structures. (b) Potential V (x ) used in Eq. (15). Black lines indicate the energy h̄ω0 of the confined modes in the wells.
(c) Lateral width of the 2D structure realizing the potential energy landscape in (b). (d)–(g) Spatially resolved density |ψ (x )|2 for ω = 3.49 meV
and a drive intensity indicated in the bottom right corner. Full red (dashed blue) line is for the forward (backward) configuration, with a drive on
the left (right) of the wells. Shaded regions indicate the position of the drive in the forward and backward propagation direction, respectively.
The positions of the external barriers are shown in gray, and their outer edge position is denoted xl,r (solid black lines). (h), (i) Reflectance and
transmittance of the device, for ω = 3.49 meV, in the forward configuration as a black line and in the backward configuration as a gray line.
The inset in (h) is a zoom on the reflectance dip, around the critical driving power F 2

c = 151.4.

this mapping by considering that the lateral confinement
creates a local potential inversely proportional to w2, w being
the square of the structure width [49,50]:

V (x) = h̄2/2m[π/w(x)]2. (14)

For strong lateral confinement, the different transverse modes
of the waveguide are far apart in energy. Thus, we can safely
consider only the lowest energy band with an effective polari-
ton mass m.

The evolution of the polariton wave function ψ (x, t ) in a
potential landscape V (x) is governed by the following driven-
dissipative 1D Gross-Pitaevskii equation [42,51]:

ih̄
∂ψ (x, t )

∂t
=

(
− h̄2

2m

∂2

∂x2 + h̄U |ψ (x)|2 − i
h̄γ

2

)
ψ (x, t )

+V (x)ψ (x, t ) + iF (x)e−i(ωt−kx), (15)

where h̄U is the repulsive polariton-polariton interaction en-
ergy and γ is the decay rate. The last term in Eq. (15)
corresponds to a monochromatic driving field of amplitude
F , frequency ω, and wave vector k. We compute the steady-
state solutions of Eq. (15) with m = 3 × 10−5me (me is the
free-electron mass), h̄U = 0.3 μeV μm, and h̄γ = 20 μeV.
These values are taken from recent experiments [36,52].

Next, we explain how we tailor the potential V (x) in order
to realize the nonreciprocal coupled-cavity design. We target a
coupling between left and right confined modes J = 100 μeV
and couplings to the waveguides κ1 = 60 μeV and κ2 =

450 μeV. According to Fig. 5, these values should yield both
zero reflectance and good isolation at the optimal � [given by
Eq. (13)].

Our approach to define V (x) in relation to the zero-
dimensional model is based on solving Eq. (15) for values
of F where the interaction term h̄U |ψ (x)|2 is negligible
and the response is linear to a very good approximation.
We begin by considering a potential landscape with a single
well [corresponding to either of the two wells in Fig. 6(b)].
For a well of length 2 μm, there is a single confined mode
therein, with confinement energy ω0 = 3.0 meV. Next, we
add a single potential barrier to tailor the coupling of the
well to the waveguide. Leakage of polaritons from the well
through the barrier broadens the confined mode linewidth.
The coupling is extracted from this broadened linewidth. For
a barrier height of 3 meV, κ1 = 60 μeV is achieved with a
barrier length 1.2 μm, and κ2 = 450 μeV is achieved with
a length 0.4 μm. Finally, to design the height of the barrier
between the two cavities to the desired value of the coupling
J , we consider coupled wells similar to those in Fig. 6(b)
but with external barriers of effectively infinite thickness.
The central barrier creates an effective coupling of amplitude
J for polaritons between the wells. This leads to bonding
and antibonding modes with energies ω0 − J and ω0 + J ,
respectively. We find that a barrier of height 2 meV and
length 1.9 μm is required to get the desired J = 100 μeV.
We assume that J is not affected by the finite width of
the barriers connecting the cavities to the 1D channels. The
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potential V (x) resulting from the above design is shown in
Fig. 6(b), and the width of the corresponding 2D structure
for an experimental implementation is shown in Fig. 6(c).
Note that in Fig. 6(b) the reference for the potential (V = 0)
corresponds to the confinement potential in the waveguides, of
width 4 μm.

Forward and backward configurations are considered in
order to determine the transmission and isolation properties
of the device. The drive is either on the left of the double well
and injects polaritons propagating toward the right (forward
configuration), or the opposite (backward). These two situa-
tions are described in Eq. (15) with a drive term Ff,b(x) =
Fe−(x−xf,b )2/2σ 2

, corresponding to a spot of Gaussian shape,
centered on xf,b = ∓12 μm in the forward and backward
configuration respectively. We choose a spot with 3 μm full
width at half-maximum (FWHM) (σ = 1.27 μm). Addition-
ally, the drive central wave vector kf,b is set to match the single
polariton dispersion at energy h̄ω to ensure efficient coupling
with the modes in the external ports (kf,b = ±√

2mω/h̄).
We now investigate the performance of the proposed de-

vice in terms of isolation and suppression of reflectance.
The steady-state density profiles in the wire, calculated for
different drive intensities, are shown in Figs. 6(d)–6(g). The
drive detuning � = ω − ω0 is fixed to � = 0.49 meV for all
cases. In the forward configuration (full red line), we define
the transmitted field ψ

f
t (x) as the field ψ (x) on the right

side of the right external barrier (x > xr = 3.35 μm). In the
backward configuration (dashed blue line), the transmitted
field ψb

t (x) is evaluated at the left of the left external barrier
(x < xl = −4.15 μm). The reflected field ψ

f,b
r (x) is defined

in a similar way. Two features in Figs. 6(d)–6(g) character-
ize the reflected field intensity in the forward configuration:
(i) the polariton density |ψ (x)|2 to the left of the pumping
region (x < −15 μm), and (ii) the density modulation be-
tween the pumping region and the left external barrier (−10 <

x < −4.15 μm), which results from the interference between
the incident and scattered field. Starting from a high drive
intensity F 2 = 400 [Fig. 6(d)], the difference of transmitted
field intensity in the forward and backward configurations
shows the nonreciprocal character of the device. However,
the device is highly reflective, as indicated by the strong
interference pattern for −10 < x < xl . Decreasing the drive
intensity to F 2 = 200 [Fig. 6(e)], we observe a reduced am-
plitude of the interference. Eventually, decreasing F 2 further,
the interference has completely disappeared at F 2 = 151.4
[Fig. 6(f)]. This indicates a suppressed reflection, and cor-
respondingly the polariton density is very low for x < −15
μm. Notice that nonreciprocal transmission is still observed
at this critical drive F 2

c = 151.4. This is no longer the case for
a drive intensity F 2 = 10 [Fig. 6(g)], i.e., in the linear regime.
In the absence of nonlinearities, the device has identical
reflection and transmission properties whether in the forward
or backward configuration.

To extract more quantitative information, we compute the
transmittance and reflectance at a given F . From the calcu-
lated intensity profiles we extract the transmitted, reflected,
and incident fields intensities |ψt,r,i |2 at the external barri-
ers position xl,r . For example in the forward configuration,
ψ

f
r (xl ) is computed by extrapolating to xl the slow exponen-

FIG. 7. (a) Minimum reflectance R1,∗ observed for any value of
F as a function of the detuning �. (b) Isolation ratio calculated at the
value of F for which R1,∗ was obtained. The dotted line indicates the
detuning used in Figs. 6(d)–6(h).

tial decay at the left side. The incident field is deduced from
the interference pattern in the region −10 < x < xl (a similar
procedure is used for the backward configuration). Adapting
the definition from the previous sections to the 1D model,
the transmittance and reflectance are then given by T ,R =
|ψt,r |2/|ψi |2. Figures 6(h) and 6(i) show the calculated R, T
versus F 2 for � = 0.49 meV in the forward (black) and back-
ward (gray) configuration. We obtain the features predicted
by the 0D model (Sec. II): a suppression of the reflectance
down to less than 10−5 is observed when driving forward at
a critical drive F 2

c = 151.4. Moreover, at this critical drive
intensity, the forward transmittance is 0.68 while backward
transmittance is 0.024. This corresponds to an isolation ratio
of 28 at Fc.

Similar to the discussion in the previous section, we extract
the minimum value of R in the forward configuration when
varying F for different values of the drive energy detuning
�. We also compute the I at R1,∗. The results, presented in
Fig. 7, show that R1,∗ becomes arbitrarily small around � =
0.494 meV for finer steps in F and �. Values of R1,∗ below
10−7 were not reached in the 1D calculations due to numerical
rounding errors.

We note that with the values of κ1,2 extracted from our
design, the analytical expression (13) for the suppression of
R in the 0D model gives � = 0.271 meV. In the present case,
we find R1,∗ = 0 for � = 0.494 meV. This difference could
be due to nonlinear spatial modifications of the modes in the
double quantum wells. Indeed, we can see in Fig. 6(g), for
instance, that the location of the density maxima within the
two cavities depends on the excitation side. This distortion
of the resonator modes, not captured by the 0D model, could
modify the subtle interference effect responsible for R1,∗ =
0. Nevertheless, the results from the 1D simulations show
that our simple 0D model captures all of the key features
discussed previously: suppression of R and high isolation
ratio. Experimentally, since the value of κ2 is often not tunable
after fabrication, the presence of two coupled cavities ensures
that R = 0 can be achieved by adjusting �.

IV. CONCLUSION

We have investigated the reflectance, transmittance, and
nonreciprocity of single and coupled cavities with Kerr-type
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nonlinearity under continuous driving and dissipation. We
derived analytical expressions predicting the existence of
unidirectional zero-reflectance states, and we verified these
predictions with numerical calculations based on nonlinear
coupled-mode theory and on the driven-dissipative Gross-
Pitaevskii equation in one spatial dimension. We demon-
strated how zero reflection and high nonreciprocity can be
simultaneously obtained by tailoring the leakage rates of the
cavities to their input-output ports. For a single cavity, zero
reflection can only be achieved for one particular value of the
input-output leakage rate difference. In contrast, for coupled
cavities we have found that zero reflection can be achieved
for any value of the leakage rates provided that one can tune
the operation frequency. Finally, we have presented the design
of an experimental structure on which our predictions could
be tested. A limitation of our approach to simultaneously
obtain zero reflection and nonreciprocity is that it is inherently
limited in the operational power range, as expected due to
the nonlinear origin of these effects. Nevertheless, we expect
these results to assist in the design of nonlinear optical iso-
lators, and other devices where light is intended to propagate
one way only and with zero reflection at the input port.
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APPENDIX A: COMPLEX FIELDS OF
COUPLED CAVITIES

Here we explain how to solve Eqs. (9) and(10) to get
the steady-state number of photons in the cavities nj and
the complex fields ψj (j = 1, 2). We start by rearranging
equations (9) and (10) as follows:

ψ1 = J−1

(
−�2 − i

�2

2
+ Un2

)
ψ2, (A1)

ψ2 =
[
i
√

κ1F +
(

−�1 − i
�1

2
+ Un1

)
ψ1

]
J−1. (A2)

To solve for n1,2, we insert the expression for ψ1 in
Eq. (A1) into Eq. (A2), and then we multiply both sides with
their complex conjugates. This leads to a polynomial equation
(of order 9) in powers of n2. Each root of that polynomial, sub-
ject to the physical condition n2 > 0, corresponds to a steady
state. Next, we can use the solutions for n2 and Eq. (A1) to
calculate n1.

We now seek expressions for the complex field ψj , which
is related to nj via ψj = √

nje
iφj . Using this relation in

Eqs. (A1) and (A2), we arrive (after some algebra) at the
following expressions for the phase factors:

eiφ1 =
√

n2e
iφ2

√
n1J

(
−�2 − i

�2

2
+ Un2

)
, (A3)

eiφ2 = J i
√

κ1F√
n2

[
J 2 − (−�1 − i �1

1 + Un1
)(−�2 − i �2

2 + Un2
)] ,

(A4)

from which the complex fields ψj can be constructed once the
nj ’s are known.

APPENDIX B: ANALYTICAL EXPRESSION FOR
ZERO REFLECTION IN COUPLED CAVITIES

In this section we derive an analytical expression guar-
anteeing the existence of a zero-reflection state in coupled
cavities. We begin the derivation by inserting the expression
for ψ2 in Eq. (10) into the expression for ψ1 in Eq. (9). After
rearranging, we obtain

0=
(

−� + Un1 − i
�1

2

)
ψ1− J 2ψ1

−� + Un2 − i �2
2

+ i
√

κ1F.

(B1)

According to Eq. (12), R = 0 implies F = √
κ1ψ1. Hence,

let us insert this expression for F into (B1), and separate the
real and imaginary parts. The equation for the real parts reads

0 = −� + Un1 − J 2

(−� + Un2)2 + �2
2

4

(−� + Un2). (B2)

Meanwhile, the equation for the imaginary parts reads

0 = �̃1 − J 2

(−� + Un2)2 + �2
2

4

�2, (B3)

where we have defined �̃1 = κ1 − γ .
Let us now rewrite Eq. (10) to get the following relation

between the number of photons in the cavities:

n2

n1
= J 2

(−� + Un2)2 + �2
2

4

. (B4)

On the one hand, inserting Eq. (B4) into Eq. (B2) leads to

(−� + Un1)n1 = (−� + Un2)n2. (B5)

On the other hand, combining Eqs. (B4) and (B3) yields

n2

n1
= �̃1

�2
. (B6)

Using Eqs. (B5) and (B6), we can now solve for n1 and
n2. We use Eq. (B6) to substitute n1 in Eq. (B5) and get the
following equation for n2:

0 =
(

1 − �2

�̃1

)[
−� + U

(
1 + �2

�̃1

)
n2

]
. (B7)

One solution for Eq. (B7) is �2 = �̃1, which is equiv-
alent to κ1 = κ2 + 2γ . As discussed in the main text, this
corresponds to the solution for R = 0 of a single resonator
with intrinsic loss 2γ , as given by Eq. (5). Note that in this

013851-9



RODRIGUEZ, GOBLOT, ZAMBON, AMO, AND BLOCH PHYSICAL REVIEW A 99, 013851 (2019)

case, Eq. (B6) imposes n1 = n2, i.e., equal population is both
resonators, confirming that they behave as a single one.

Coming back to Eq. (B7), for �2 �= �̃1 we get the expres-
sion for n2 corresponding to a second branch of solution,

n2 = �

U

�̃1

�̃1 + �2
. (B8)

Finally, we insert Eq. (B8) into Eq. (B3), and after a little
bit of algebra we get

�2 = (κ1 + κ2)2

(
J 2

(κ1 − γ )(κ2 + γ )
− 1

4

)
. (B9)

Note that we can also determine the value of the drive
amplitude Fc corresponding to the above solution. To this

end, we recall that R1 = 0 imposes F = √
κ1ψ1. F is a real

number, so in this case ψ1 is also real and we have ψ1 = √
n1.

We use Eqs. (B6) and (B8) to obtain the expression for n1, and
finally we get the following expression for Fc:

F 2
c = �

U

κ1(κ2 + γ )

κ1 + κ2
. (B10)

Equation (B9) constraints the parameters �, J , and κ1,2

such that R1 = 0. Equation (B10) gives the drive Fc at which
R1 = 0 is achieved.

In particular, when γ = 0, Eq. (B10) is symmetric to the
switching of input ports 1 ↔ 2. Exciting from each side leads
to R = 0, T = 1: in this particular situation, the device is
perfectly reciprocal.
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