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Abstract
Coupled systems subject to dissipation exhibit two different regimes known as
weak coupling and strong coupling. Two damped coupled harmonic oscilla-
tors (CHOs) constitute a model system where the key features of weak and
strong coupling can be identified. Several of these features are common to
classical and quantum systems, as a number of quantum-classical corre-
spondences have shown. However, the condition defining the boundary
between weak and strong coupling is distinct in classical and quantum
formalisms. Here we describe the origin of two widely used definitions of
strong coupling. Using a classical CHO model, we show that energy exchange
cycles and avoided resonance crossings signal the onset of strong coupling
according to one criterion. From the classical CHO model we derive a non-
Hermitian Hamiltonian describing open quantum systems. Based on the
analytic properties of the Hamiltonian, we identify the boundary between
weak and strong coupling with a different feature: a non-Hermitian degeneracy
known as the exceptional point. For certain parameter ranges the classical and
quantum criterion for strong coupling coincide; for other ranges they do not.
Examples of systems in strong coupling according to one or another criterion,
but not both, are illustrated. The framework here presented is suitable for
introducing graduate or advanced undegraduate students to the basic proper-
ties of strongly coupled systems, as well as to the similarities and subtle
differences between classical and quantum descriptions of coupled dissipative
systems.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Studies of energy transfer are at the foundation of physics. Two damped coupled harmonic
oscillators (CHOs) constitute an illustrative system where the interplay between energy
exchange and dissipation can be recognized. The CHOs exchange energy between them via a
coupling spring, while they each loose energy to their surroundings via friction. Conse-
quently, qualitatively distinct behaviour emerges when one of these processes dominates. In
this light, one of the most important distinctions in the physics of coupled dissipative systems
is made: weak versus strong coupling. For two CHOs, weak and strong coupling are com-
monly identified in three contexts: (i) the dynamics is governed by exponential decay or
energy exchange cycles; (ii) the steady-state spectrum of the driven system displays a single
resonance or two split peaks; (iii) the eigenfrequencies of the CHOs cross or anti-cross as the
frequency difference between the bare oscillators transits through zero. Naturally, the analysis
of dynamics, steady-state spectra, and eigenvalues also constitute the main arena of the
dissipative two-state quantum model [1]. Despite the many parallels between classical and
quantum descriptions of coupled dissipative systems [2], two distinct criteria for strong
coupling are widespread.

One criterion for strong coupling relies on the energy exchange rate exceeding all loss
rates. Novotny quotes a tighter variant of this criterion: ‘to observe strong coupling, the
frequency splitting [µ coupling strength] needs to be larger than the sum of the linewidths [µ
loss rates]’ [3]. The spectrum of a driven CHO system under this condition displays two split
resonances provided that the driving force does not excite only one eigenmode of the system.
Hence, in a similar spirit Törmä and Barnes defined the coupling regime based on whether
two split peaks are visible in the spectrum (strong coupling) or not (weak coupling) [4].

A second (different) criterion for strong coupling involves the energy exchange rate
exceeding the difference between the loss rates rather than their individual magnitudes or their
sum (see e.g. Andreani [5] or Laussy et al [6]). This second criterion implies that two
identical oscillators with arbitrarily high losses are strongly coupled for any non-zero energy
exchange rate. If the energy exchange rate is much less than the loss rates, the strongly
coupled system is incapable of exhibiting energy exchange cycles or split peaks in the
spectrum. Nevertheless, two levels anti-cross provided that the difference between their loss
rates is sufficiently small compared to their energy exchange rate.

The two criteria described above give the same result for many systems deep into the
strong or weak coupling regimes. However, intermediate regimes exist where a given system
can fulfill one condition for strong coupling but not the other. While the first (second)
condition for strong coupling is more often encountered in classical (quantum) formalisms, no
particular axiom of classical or quantum mechanics holds any of these criteria above the
other. As we will see, it is simply the analysis of different features which gives rise to distinct
criteria. Understanding these differences is crucial for assessing the characteristic time scales
of a system. This understanding is also relevant in the context of many quantum-classical
correspondences, where CHOs have played a prominent role [3, 7–21]. Another motivation
for distinguishing between weak and strong coupling of CHOs is related to the interpretation
of experiments: CHOs are widely used to analyse experimental data based on a best-fit
approach (see for example [22–28] for a far-from exhaustive list). A distinction between weak
and strong coupling is necessary to determine whether the constituents of the coupled system
merely perturb each other, or their mutual influence is so strong that their individuality is lost.
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Here we demonstrate the different features defining the boundary between weak and
strong coupling in classical and quantum frameworks. We study the classical CHO dynamics
in section 2 and the steady-state spectra in section 3. Therein, we find a transition from weak
to strong coupling evidenced by the onset of energy exchange cycles and frequency splitting
between the CHOs. In section 4 we map the classical CHO model to the two-state non-
Hermitian Hamiltonian (NHH) describing open quantum systems. The NHH has a complex
energy spectrum, the imaginary part of which represents the losses. The discussion is suitable
for introducing students to the non-Hermitian quantum framework. This is becoming
increasingly relevant since NHHs have proven to model several physical systems more
faithfully than their Hermitian counterparts [29–34]. Amongst the most remarkable features of
NHHs lies a non-Hermitian degeneracy known as the exceptional point (EP) [29, 32]. In
section 4 we explain the origin of the EP and its relation to the second distinction between
weak and strong coupling. More generally, the derivation of a two-state NHH from the
equations of motion of two damped CHOs constitutes an insightful exercise whereby students
can recognize links between first-order perturbation theory and the intuitive physics of
coupled oscillators. In this way, two key elements of the physics curriculum encountered in
introductory quantum and classical mechanics courses can be presented in a unified frame-
work. Consequently, students will be able to appreciate a wide range of seemingly abstract
quantum phenomena from the classical perspective of coupled oscillators, while requiring
only a basic knowledge of linear algebra, ordinary differential equations, and complex
analysis.

2. Dynamics of CHOs

We first study the dynamics of two damped CHOs as illustrated in figure 1. In the absence of
any driving force (F= 0), the equations of motion are

x x x x

x x x x

¨ 0,

¨ 0. 1

1 1 1 1
2

1
2

2

2 2 2 2
2

2
2

1

˙
˙ ( )

g w

g w

+ + - W =

+ + - W =

xj (j=1, 2) is the displacement from equilibrium of the jth oscillator, which has an uncoupled
eigenfrequency k mj j jw = and a loss rate jg . Let us first consider two identical oscillators:
m m m1 2= = , k k k1 2= = , 1 2 0w w w= = and 1 2g g g= = . The oscillators are coupled at a
rate mkW = , where κ is the stiffness constant of the middle spring. We focus on
underdamped oscillators ( 2 0g w< ) which are best suited for distinguishing between weak
and strong coupling. We refer to [35] for the overdamped ( 2 0g w> ) case and the
corresponding quantum-classical correspondence.

Figure 1. Two coupled harmonic oscillators. 1,2g are the loss rates, k m1,2 1,2 are the

eigenfrequencies of the bare oscillators, κ is the coupling spring constant, x1,2 are the
displacements from equilibrium, and F is a driving force (see text).
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We are interested in the time-evolution of the total energy in the oscillators when one of
the oscillators is initially displaced from equilibrium, i.e., x 0 01( ) ¹ and x 02 = . We can
solve this problem numerically in matrix form using the state-space representation. For this
purpose, the two second order differential equations (equation (1)) are reduced to four first
order differential equations. The state variables representing the system are

q x
q x
q x

q x

,
,
,

. 2

1 1

2 1

3 2

4 2

˙

˙ ( )

=
=
=
=

These variables form the state vector q, whose time-evolution obeys the following matrix
differential equation:

q
q
q
q
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q
q
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We solve equation (3) numerically, setting 1 rad0w = s−1 and 10 3
0g w= - . We calculate

the total energy in oscillators 1 and 2 given by the sum of the kinetic and potential energies,

T1,2 and V1,2, respectively. In terms of the state variables, T V
mq kq

1 1 2 2
2
2

1
2

+ = +

and T V
mq kq

2 2 2 2
4
2

3
2

+ = + .
In figure 2 we plot T V1,2 1,2+ as a function of the dimensionless time constant

t 22
0( )pwW for three values of the ratio 2

0w gW . When 2
0w gW < , loss dominates over

energy exchange. An example is shown in figure 2(a), where 0.52
0w gW = . The initial

energy stored in oscillator 1 (blue line) is dissipated before it can be transferred to oscillator 2
(red line). The dynamics is qualitatively similar for 0W = (not shown), where the total
energy in oscillator 1 decays as e t2g- (black dotted line). Hence, the weak coupling simply
exerts a perturbative effect on the exponential energy decay of the excited CHO.

A different regime arises when 2
0w gW > . We plot the dynamics for 1.12

0w gW = in
figure 2(c), and for 32

0w gW = in figure 2(e). In figure 2(c) we observe a single cycle of
energy exchange between the CHOs, while in figure 2(e) we observe multiple cycles. The
observation of energy exchange cycles indicates that the CHOs transfer energy between them
faster than they each dissipate energy. The observation of this effect is therefore often
associated with the strong coupling regime. It is noteworthy that, within the classical form-
alism, observing energy exchange cycles requires initially displacing one of the oscillators
from its equilibrium position. This means that energy needs to be externally fed into the
system. According to quantum theory, this needs not be the case; an atom in a cavity can
exchange energy with the vacuum field [36].

Figure 2 sheds light on a smooth boundary between weak and strong coupling at
12

0w gW » . Note that for 1 2g g g= = we have 22
0

2
1 2( )w g w g gW = W + . Hence, the

above definition of strong coupling is sometimes expressed in terms of the sum of the loss
rates [3]. While the sum of the loss rates is a decisive factor for observing energy exchange
cycles, the difference between the loss rates is not. Consider that 01 2∣ ∣g g- = for all three
cases in figure 2, yet a significantly different amount of energy exchange is observed for each
case. Thus, qualitatively distinct behaviour emerges even though the difference between the
loss rates remains unchanged. In section 4 we will discuss the relevance of the quantity

1 2∣ ∣g g- . By analysing different features, we will show that the value of 1 2∣ ∣g g- compared to
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the value of Ω can serve to define the boundary between two distinct regimes also known as
weak coupling and strong coupling.

Next we analyse the time-integrated power spectrum of the undriven initially excited
CHOs. The frequency-dependence of the jth oscillator’s displacement from equilibrium is
obtained by Fourier-transforming its time-dependent displacement from equilibrium, viz

X x t t
1

2
e d . 4j j

ti( ) ( ) ( )òw
p

= w

-¥

¥
-

The time-integrated dissipated power spectrum is given by

P X . 5j j j j
2 2( ) ∣ ( )∣ ( )w w g w=

In figures 2(b), (d) and (f) we show as black solid lines the total absorbed power spectrum
Pt=P1 + P2 for the corresponding time-traces in figures 2(a), (c) and (e). We normalize each

Figure 2. (a), (c) and (e) show the time evolution of the total energy (kinetic T plus
potential V) in two coupled harmonic oscillators. Ω is the coupling rate, γ is the loss
rate, and 0w is the eigenfrequency of the bare oscillators. The blue solid line is the
energy in oscillator 1, the red dashed line is the energy in oscillator 2, and the dotted
black line is e t2g- . In (b), (d) and (f) the black solid line is the time-integrated dissipated
power by both oscillators. The overlying grey dashed line is the steady-state dissipated
power by both oscillators when only one oscillator is driven by a time-harmonic force.
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spectrum because we are interested in qualitative behaviour only. The spectra show the
frequency splitting of a single resonance into two resonances as the coupling strength
increases. This effect is often referred to as ‘Rabi splitting’ or ‘Autler-Townes splitting’, and it
is regarded as the spectral signature of the transition to strong coupling. The split peaks are
centered at the eigenfrequency of the bare (identical) oscillators.

In addition to the condition 12
0 w gW , observing energy exchange cycles requires that

the initial conditions do not match an eigenmode of the system. The CHO eigenmodes
involve the combined harmonic motion of the two oscillators in phase (symmetric mode) or
π-dephased (anti-symmetric mode). These modes are excited for the initial conditions
x x0 0 01 2( ) ( )= ¹ and x x0 0 01 2( ) ( )= - ¹ , respectively. If an eigenmode is directly exci-
ted, the strong coupling dynamics is governed by exponential energy decay, as in weak
coupling. The corresponding power spectrum displays a single resonance peak shifted from

0w by an amount proportional to Ω. The shift is to lower frequencies when the symmetric
mode is excited, and to higher frequencies when the anti-symmetric mode is excited.

Notice in figure 2(e) that the CHOs undergo complete energy exchange at integer
multiples of the time constant t 22

0( )pwW . This changes when the oscillators are detuned, as
we now show. We consider the dynamics of CHOs with unequal eigenfrequencies in
figure 3(a), and with unequal loss rates in figure 3(b). The rates used in the calculations are
reported in the figure caption; their choice will be clarified below. Figure 3(a) shows that
energy exchange cycles persist despite the detuning 111 2w w- = mrad s−1. In other words,
the oscillators undergo exchange energy cycles even though their eigenfrequencies are sig-
nificantly different. However, in contrast to the zero-detuning case where 1 2w w= (e.g.
figure 2(e)), the initially excited oscillator stores more energy than its coupled partner at all
times. For much greater detunings energy exchange cycles vanish and the dynamics resem-
bles that of weak coupling instead. Figure 3(b) displays roughly a single cycle of energy
exchange between CHOs with 2 11.51 2( )g g- = mrad s−1. The behaviour in this case is
similar to that in figure 2(b), where the oscillators had equal loss rates and they were just
above the onset of strong coupling. Notice in particular that oscillator 2 (red line) receives a
significant fraction of the energy from oscillator 1 (blue line), which contrasts with the weak
coupling scenario depicted in figure 2(a). Thus, the oscillators undergo significant energy
exchange even though their loss rates are rather different.

In preparation for section 4, let us evaluate for all systems in figures 2 and 3 the
dimensionless quantity m

2 wW D, whose relevance will be clarified further ahead.

Figure 3. Time evolution of the total energy in two coupled harmonic oscillators with
unequal eigenfrequencies in (a) and unequal loss rates in (b). For both plots

1 rad1w = s−1 and 0.1 rad1W = m−1. In (a): 0.989 rad2w = s−1 and
11 2g g= = mrad s−1. In (b) 2 1w w= , 221g = mrad s−1 and 12g = mrad s−1.
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i 21 2 1 2( ) ( )w w g gD = - - - is the complex detuning of the bare oscillators and
2m 1 2( )w w w= + is their mean eigenfrequency. Since 0D = for all systems in figure 2,

m
2 wW D = ¥. Therefore, the quantity m

2 wW D does not in general distinguish between
systems that exchange energy efficiently (e.g. figure 2(e)) and those that do not (e.g.
figure 2(a)). Conversely, figures 3(a) and (b) illustrate two systems for which 1m

2 wW D <
yet significant energy exchange cycles are visible. In particular, for the calculation in
figures 3(a) we set 0.91m m

2 2
1 2( )w w w wW D = W - = , while for figure 3(b) we set

2 0.95m m
2 2

1 2( )w w g gW D = W - = . The significance of these cases will be discussed in
section 4, where we derive a different condition for strong coupling based on 1m

2 wW D .

3. Driven-dissipative CHOs

In this section we analytically calculate the steady-state power dissipated by a driven system
of CHOs. We first consider the excitation of oscillator 1 only. The oscillator is driven by a
harmonic force of amplitude per unit mass F and frequency ω. Thus, we add the term Fe tiw-

to the right-hand side of the top equation (1). Inserting the ansatz x t x ej j
t0 i( ) = w- in

equation (1), we obtain the following matrix equations describing the driven-dissipative
CHOs:

x
x

Fi

i
e
0

. 6
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2 2
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2

2
2
2 2

2
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2

i
( )

⎡
⎣
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⎤
⎦
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⎡
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⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

w w g w

w w g w

- - - W

- W - -
=

w-

Equation (6) has the form Zx F= . Rearranging as x Z F1= - leads to

x
x

F
Z
1 i

i
e
0

, 7
t1

2

2
2 2

2
2

2
1
2 2

1

i

∣ ∣
( )⎡

⎣⎢
⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

w w g w

w w g w
=

- - W

W - -

w-

with Z i i1
2 2

1 2
2 2

2
4∣ ∣ ( )( )w w wg w w wg= - - - - - W . In steady-state, the power dissipated

by the jth oscillator at the driving frequency ω is P xj j j
2 2∣ ( )∣w g w= .

In figures 2(b), (d) and (f) we plot as grey dashed lines the total steady-state dissipated
power spectrum Pt=P1 + P2 calculated for the same model parameters used to calculate the
dynamics in figures 2(a), (c) and (e). We find an excellent agreement between the steady-state
and the time-integrated dynamical response (black lines) of the system. The criterion for
strong coupling is therefore identical.

Figure 4. Total power absorbed in steady-state by two coupled harmonic oscillators
with variable frequency detuning δ for two different values of 2

0w gW (see insets). In
both plots, only the first oscillator with fixed eigenfrequency 0w is driven by a harmonic
force with frequency ω.
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Now we examine a feature commonly associated with strong coupling: avoided reso-
nance crossing (ARC). An ARC arises when two resonances approach, and then repel, each
other in frequency as some parameter is varied. For driven CHOs, this parameter can be the
uncoupled eigenfrequency detuning 2 1d w w= - . We illustrate the ARC phenomenon in
figure 4 by calculating the dissipated power Pt as a function of the driving frequency ω and of
the detuning parameter δ. The driven frequency is referenced to 0 1w w= for convenience.
The losses of both oscillators are constant: 10 3

0g w= - . Figure 4(a) shows results for
12

0w gW = , and figure 4(b) corresponds to 22
0w gW = . The two resonances that anti-cross

near zero detuning ( 0d = ) constitute the ARC, and their splitting at 0d = is the so-called
Rabi splitting. In figure 4(a) we observe that for 1∣ ∣ d g the spectrum is dominated by a
single resonance depending only weakly on δ. This is essentially the driven oscillator reso-
nance. Since the CHOs are at the aforementioned smooth boundary between weak and strong
coupling, a detuning of one linewidth is sufficient to practically vanish the influence of the
second oscillator on the driven one. This changes for a stronger coupling strength as in
figure 4(b). Notice in figure 4(b) that two resonances well separated in frequency seem to
approach, but then repel, each other as δ passes through zero; this is a clear ARC. The
resonances in figure 4(b) also deviate more from the uncoupled oscillator eigenfrequencies for
a given δ than their counterparts in figure 4(a); this is expected due to the stronger coupling
strength in figure 4(b).

ARC is a sufficient but not a necessary signature of strong coupling. The CHO response
depends on the match between the driving force and the eigenmodes of the system. When
only one oscillator is directly driven, ARCs are observed because both the symmetric and
anti-symmetric modes can be excited with equal strength. This is no longer the case when
both oscillators are directly driven and their relative phase is thereby imposed by the driving
force. For example, consider the case where the two forces have equal amplitude and fre-
quency. Thus, Fe tiw f- + is included in the second row of the right-most term in equations (6)
and (7). We present the case 0f = in figure 5(a), and f p= in figure 5(b). The lower branch
is excited much more strongly in figure 5(a), while the opposite is true in figure 5(b). At 0d =
each driving scheme excites one resonance only, corresponding to the symmetric mode in
figure 5(a) and to the anti-symmetric mode in figure 5(b). For 0d ¹ each oscillator supports
symmetric and anti-symmetric modes at slightly different frequencies. Consequently, the net
driving force no longer matches any one of the eigenmodes perfectly. Notice that the upper

Figure 5. Total power absorbed in steady-state by two coupled harmonic oscillators
with 22 wgW = and for variable frequency detuning δ. For both plots the oscillators
are each driven by a time-harmonic force with equal frequency ω and amplitude per
unit mass F. In (a) the two driving forces have equal phase (F F1 2= ), while in (b) they
are π-dephased (F F1 2= - ).
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resonance branch is progressively, although weakly, excited as ∣ ∣d increases in figure 5(a). A
similar effect occurs for the lower resonance branch in figure 5(b).

Our spectral analysis has focused on a single observable—the total dissipated power.
However, several experiments have been interpreted through a fit of the dissipated power by
one oscillator only [10, 11, 37], or the CHO eigenvalues [26, 28]. A clear-cut distinction
between weak and strong coupling is more difficult in such cases. The response of the two
oscillators can in fact be pronouncedly different near the boundary between weak and strong
coupling [37]. Studies of strong light-matter coupling have shown that the observable fre-
quency splitting depends on how the system is probed, e.g. transmission, reflection, or
absorption [38, 39]. The emission spectrum can also display a different frequency splitting
[27]. Therefore, relating an observable in experiments with its counterpart in a fitted CHO
model requires careful consideration. In this sense, the total dissipated power by the exper-
imental and CHO model systems seem like a good figure of merit to demonstrate energy
transfer between oscillators. While it may not always be easy to experimentally measure it,
analysing the total dissipated power will likely lead to a more faithful mapping of the
coupling regime of a system. Reference [27] illustrates a similar approach for a nanophotonic
system. Reference [39] presents an interesting molecule-cavity system which can be actively
tuned in and out of the strong coupling regime; all relevant observables (including the
dissipated power) were obtained therein. Finally [25], illustrates an interesting alternative
approach. The authors of [25] deduce the coupling and loss rates of a molecule-nanoparticle
system by analysing its scattering spectrum with a CHO model.

4. NHH of CHOs

In this section we map the CHO equations of motion to the two-state NHH. The NHH we
derive is similar to the Hamiltonian of a two state perturbed system (as discussed in intro-
ductory quantum mechanics textbooks [40]), with the important difference that for the NHH
the energy spectrum is complex. As we will see, the imaginary part of the energy is directly
related to the losses, i.e. the fact that the oscillators are in contact with a reservoir (air) where
they dissipate energy.

We start by inserting the ansatz x t x ej j
t0 i( ) = w- in equation (1), and writing the equations

in matrix form. Next, dividing the first row by 1w w+ and the second row by 2w w+ , we get

x
x
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W
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=

Since we are interested in the response of the system at or near resonance, we assume
1,2∣ ∣w w w-  . Under this approximation and defining 21,2¯ ( )w w w» + as the mean

frequency, equation (8) becomes

x
x

i

2 2

2

i

2

0
0

. 9
1

1
2

2

2
2

1

2

¯

¯

( )

⎡

⎣
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⎤

⎦
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⎡
⎣⎢

⎤
⎦⎥

⎡
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⎤
⎦⎥

w
g

w
w

w
w

g
w

- - -
W

-
W

- -
=

Equation (9) has non-trivial solutions if the determinant of the left-most term vanishes. Hence,
we need to solve the characteristic equation H I 0∣ ∣w- = , where I is the identity matrix and
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H
g

g

i

2
i

2

, 10
1

1

2
2
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w
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with g
2

2

¯
= -

w
W the effective coupling constant.

Equation (10) defines, in units of 1 = , the two-state NHH corresponding to the CHOs.
Through diagonalization and a little bit of algebra, we can write the eigenvalues of the NHH
in the following form

g

2
1

2
, 11

2

˜ ( )⎜ ⎟⎛
⎝

⎞
⎠w w= 

D
+

D


where we have defined 2 i 41 2 1 2˜ ( ) ( )w w w g g= + - + as the average complex frequency
of the bare states, and i 21 2 1 2( ) ( )w w g gD = - - - as their complex detuning. Physically,
the real and imaginary parts of w are associated with the peak frequencies and linewidths of
decay resonances, respectively. We will denote these as follows: i 2w w w= ¢ -    . For the
particular case of a lossless ( 01 2g g= = ) degenerate ( 1 2w w= ) system, the eigenvalues
(energies given our convention 1 = ) in equation (11) are those predicted by first-order time-
independent degenerate perturbation theory [40]. They constitute the spectrum of a Hermitian
Hamiltonian describing a conservative two-state quantum system under the influence of a
perturbation with a strength proportional to g.

The mapping of the classical equations of motion of CHOs to a NHH sheds light on a
connection between the physics of first order perturbation theory and coupled oscillators. This
quantum-classical correspondence suggests that allowing Hamiltonians to be non-Hermitian
in quantum mechanics amounts to allowing oscillators to be damped in classical mechanics.
While the latter is common practice at the undergradaute level, the former is currently not.
Since the non-Hermitian framework is becoming increasingly relevant at various fronts of
physics [29–34], the present discussion conveys a simple approach through which advanced
undergraduates or graduate students can be introduced to this topic.

Let us now analyse several of the general properties of the complex eigenfrequencies w.
We do this through analytical inspection of equation (11). Taylor expanding the square root
term at 0g2 =

D
yields

g g

2
1

2 2
. 12

2 4

˜ ( )⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟w w» 

D
+

D
-

D
¼

Retaining only the leading term yields the frequencies of the bare states, i.e. 2˜w w=  D .
It follows that the influence of the coupling constant g on w is negligible, or weak,
as D  ¥.

We also recognize from equation (11) that the square root term is singular at
g2 iD =  . The existence of this pole in the complex Δ plane implies that the perturbation
series of w in powers of g2 D converges inside a disk of radius g2 1∣ ∣D = . For

g2 1∣ ∣ D , w can not be analytically calculated by considering g2 D as a perturbation.
This non-perturbative regime is therefore known as the strong coupling regime.

There are two important differences between the above definition of strong coupling and
the one discussed in previous sections. Firstly, under the criterion derived in the present
section, the ratio of the coupling constant to the individual loss rates or their sum imposes no
restriction in defining the strong coupling regime. Secondly, the boundary between weak and
strong coupling as determined by the perturbative or non-perturbative character of the
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parameter g2∣ ∣D is sharp. This sharpness is determined by the existence of a pole in the
complex plane. In previous sections, energy exchange cycles and/or frequency splitting
appeared smoothly as the parameter 2

0w gW increased above unity.
Next we illustrate the general behaviour of w in the complex Δ plane. For brevity, we

define 1 2w wD¢ = - and 21 2( )g gD¢¢ = - as the real and imaginary parts of the complex
detuning iD = D¢ - D. The real part of w is plotted in figure 6(a), and the imaginary part
of w is plotted in figure 6(b). All quantities in figure 6 are divided by g2 to render all axes
dimensionless.

Figure 6 shows w¢ and w in the complex plane. Interestingly, at g2 1D¢¢ =  and
0D¢ = both the real and imaginary parts of w+ and w- coalesce. This is the so-called EP at the

heart of non-Hermitian quantum mechanics [29]. The EP defines the boundary between
strong and weak coupling. In contrast with a 2×2 Hermitian Hamiltonian involving purely
real detuning ( 0D¢¢ = ), figure 6 shows that the eigenvalues of the NHH are analytic con-
tinuations of each other via the EP. Thus, by continuously varying Δ one energy level of the
system is transformed into another.

To visualize the EP and its vicinity more clearly, we plot in figures 7(a) and (b) cuts of
figures 6(a) and (b), respectively. In both panels we plot w as a function g2D¢ for three
different values of g2D¢¢ . The blue dashed lines correspond to g2 0.9D¢¢ = , the black solid
lines correspond to g2 1D¢¢ = , and the red dashed–dotted lines correspond to g2 1.1D¢¢ = .
The blue dashed and red dashed–dotted lines illustrate the general structure of the NHH
spectrum: level crossings imply anti-crossings of the corresponding resonance linewidths and
vice versa [41]. However, at the EP both real and imaginary parts cross (black solid lines).
There are various other fascinating aspects of the EP; we refer to Moiseyev for further
details [29].

5. Concluding remarks

In section 2 we discussed the existence of two dynamical regimes based on the presence or
absence of at least one cycle of energy exchange between CHOs. A single cycle of energy
exchange corresponds to an observable resonance frequency splitting in the time-integrated
power spectrum. Similarly, in section 3 we showed that the steady-state response of a driven
CHO system displays an identical frequency splitting and an ARC under the same condition:

12
0 w gW . For both the dynamics and the steady-state response, the transition from weak

to strong coupling as 2
0w gW increases above unity is smooth.

In section 4 we mapped the CHO equations of motion to the two-state NHH. Therein, we
found that strong coupling corresponds to g2 1∣ ∣ D , with g the coupling constant and Δ

the complex detuning between the bare states. This condition is based on the analytic
properties of the NHH eigenvalues (energies) as a series in powers of g2 D. In particular,
weak and strong coupling are the regimes for which g2 D is perturbative or not, respectively.
The distinction in this case is sharp; it is based on the presence of a pole in the complex plane.

The two criteria for strong coupling we discussed ( 12
0 w gW and g2 1D ) give the

same result for many systems deep in the strong or weak coupling regimes. However, we
have seen that certain systems can comply with one criterion but not the other. Firstly, in
figure 2(a) we presented a system for which 12

0w gW < and g2 1∣ ∣D  , thereby com-
plying with the second condition for strong coupling without displaying energy exchange
cycles. Next, in figures 3(a) and (b) we considered systems with unequal eigenfrequencies and
loss rates, respectively. The former sustained multiple (incomplete) energy exchange cycles,
while the latter showed a single cycle of energy exchange. Therefore, while both systems in
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figure 3 display energy exchange cycles, the condition g2 1∣ ∣ D is not fulfilled. In view of
these results, it is clear that the two definitions of strong coupling can not in general be used
interchangeably. An anti-crossing of real eigenvalues does not imply energy exchange cycles
or ARCs and vice versa.

Figure 6. (a) Real and (b) imaginary parts of the non-Hermitian Hamiltonian
eigenvalues plotted in the complex detuning plane. 1 2w wD¢ = - is the real detuning
and 21 2( )g gD¢¢ = - is the imaginary detuning. All quantities are divided by g2 , with
g the coupling constant, such that all axes are dimensionless. The exceptional points
(EP) are indicated by the arrows.
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Understanding the physical differences associated with the distinct criteria for strong
coupling is especially critical in studies of energy transfer. For example, the authors of [26]
plotted calculated eigenvalues on top of measured reflectivity data in order to quantify energy
transfer between molecules and a metallic structure. Interestingly, for some data sets the
eigenvalues anti-cross while the measurements display single, at most weakly perturbed,
resonance. Energy transfer is largely overwhelmed by dissipation in such cases (no energy
exchange cycles). Another interesting example of how the model and approach employed can
lead to significantly different conclusions transpires from comparing [25] with [42]. In [25]
the authors observe a modest, but well-visible, ARC, and they conclude that they only
approach but not fully reach the strong coupling regime. In contrast, in [42] a smaller
frequency splitting, which is well below the largest resonance linewidth, is observed.
Nevertheless, the authors claim to observe the strong coupling regime based on the anti-
crossing of the real part of the resonance energy (eigenvalue) [42]. These two different
interpretations, here taken as an example, are likely due to the use of different models and
approaches. These examples illustrate why it is relevant to look at each system in different
ways, and to raise awareness about the physical effects defining the boundary between weak
and strong coupling in different formalisms.

Finally, it is worth mentioning that while a classical analog to strong coupling based on
CHOs was presented in [3], the analogy relied on the anti-crossing of the eigenvalues of a
lossless system. However, lossless systems can not in general define a boundary between
weak and strong coupling. Every lossless system tuned in resonance is ‘strongly coupled’ for
any nonzero energy exchange rate. It is only through the inclusion of losses and the departure
from the Hermitian framework that the different features of weak and strong coupling in the
classical and quantum descriptions can be recognized. Students can be introduced to all of
these features, and to the key ideas of the non-Hermitian quantum framework, through
mechanical models of CHOs or through their electrical counterparts which have proven
successful in undergraduate laboratories worldwide [7, 14, 16].
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