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Metallic nanostructures for efficient LED lighting

Gabriel Lozano1, Said RK Rodriguez2, Marc A Verschuuren3 and Jaime Gómez Rivas4,5

Light-emitting diodes (LEDs) are driving a shift toward energy-efficient illumination. Nonetheless, modifying the emission inten-

sities, colors and directionalities of LEDs in specific ways remains a challenge often tackled by incorporating secondary optical

components. Metallic nanostructures supporting plasmonic resonances are an interesting alternative to this approach due to their

strong light–matter interaction, which facilitates control over light emission without requiring external secondary optical compo-

nents. This review discusses new methods that enhance the efficiencies of LEDs using nanostructured metals. This is an emer-

ging field that incorporates physics, materials science, device technology and industry. First, we provide a general overview of

state-of-the-art LED lighting, discussing the main characteristics required of both quantum wells and color converters to effi-

ciently generate white light. Then, we discuss the main challenges in this field as well as the potential of metallic nanos-

tructures to circumvent them. We review several of the most relevant demonstrations of LEDs in combination with metallic

nanostructures, which have resulted in light-emitting devices with improved performance. We also highlight a few recent studies

in applied plasmonics that, although exploratory and eminently fundamental, may lead to new solutions in illumination.
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INTRODUCTION

Solid-state lighting (SSL) is an illumination technology that has
emerged in the past decade due to the development of white light-
emitting diodes (LEDs). Currently, LEDs use a mature technology that
can outperform traditional light sources due to their higher efficien-
cies, longer lifetimes, fast switching, robustness and compact size1,2.
The working principle of LEDs is based on electroluminescence, that
is, the radiative recombination of injected electron–hole pairs in a
material. Electroluminescence in inorganic semiconductors was first
observed by Round3, who applied a voltage across two contacts on a
SiC crystal to generate yellow light. Electroluminescence was intensely
investigated in subsequent years4 and was reported in several III–V
semiconductors in the 1950s5,6. Techniques to create p–n junctions
also improved, leading to the demonstration of infrared and red LED
emission in GaAs and GaAsP in 19627,8. Although blue LED emission
turned out to be more complex than initially thought, due to
difficulties associated with producing high-quality GaN and doping
this material, it was finally accomplished in the early 1990s by two
independent research groups9–11. This achievement represented a
technological breakthrough that led to the award, in 2014, of the
Nobel Prize in Physics to Isamu Akasaki, Hiroshi Amano and Shuji
Nakamura. We expect to see widespread replacement of traditional
light sources with LEDs within the next two decades, leading to a
considerable reduction in worldwide electricity consumption. To
facilitate this transition, we must integrate LEDs into many different

applications. To do this, we must be able to accurately and specifically
control brightness, color and directionality of light emitted from
LEDs. It appears that this control may be achieved using
nanostructures12.
Nanostructures, which have dimensions comparable to the wave-

length of light, are especially suited to enhancing light–matter
interactions13. Metallic surfaces and nanostructures supporting surface
plasmon polariton (SPP) resonances are of particular interest in this
regard14. These resonances have their origin in the coherent oscillation
of charge carriers in the metal. The spontaneous emission from
sources in the proximity of metals can be modified by SPPs, thereby
influencing the emission rate and directionality15–34. These modifica-
tions are analogous to the resonant amplification and directional
radiation of antennas. Therefore, metallic nanoparticles supporting
SPPs have been referred to as optical antennas or nanoantennas35,36.
However, integrating such resonant nanostructures into state-of-the-
art lighting applications remains challenging. The vast majority of
studies has focused on modification of the emission properties of
single and/or low-efficiency emitters23,37,38, while real applications in
SSL require modification of emission over macroscopic areas, typically
in the mm2 range, of highly efficient emitters for which the typical
photoluminescence quantum yield (QY) exceeds 90%. Until recently,
these stringent requirements have limited the use of plasmonic
structures for SSL. This situation is quickly changing due to the
introduction of cost-effective nanofabrication techniques for use in
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light extraction, spectral shaping of emissions and strong beaming,
without requiring additional external optical components37,39–42. This
article reviews recent developments regarding nanostructured metallic
surfaces and nanoantennas for use in SSL, an emerging field that
provides new opportunities for plasmonics applications.

SOLID-STATE WHITE-LIGHT GENERATION

Organic LEDs43–50 and light-emitting electrochemical cells51,52 are
lightweight, flat and thin large-area diffuse light sources that represent
new illumination technologies. However, inorganic LEDs are currently
best suited for general illumination purposes53. Therefore, the follow-
ing discussion focuses on inorganic LEDs. There are two generic
approaches to generating artificial white light using inorganic semi-
conductor LEDs54–56. In the first, several LEDs emit different colors
that are combined to produce white light57. Although significant
advances have been made in the development of nanoscale LEDs58–62,
the maximum efficiency of all semiconductor-based white LEDs is
limited by the relatively low efficiencies of green and yellow LEDs, a
challenge referred to as the green–yellow gap. In the second and
currently the most prevailing approach, highly efficient blue LEDs are
used to generate green and red light via color conversion using one or
more photoluminescent materials, traditionally called phosphors63–65.
This second approach is illustrated in Figure 1. The phosphor must
have the following: (i) a close-to-one QY to maximize blue-to-green/
red conversion efficiency; (ii) excellent temperature and chemical
stabilities; (iii) moderate thermal quenching of emissions at tempera-
tures over 100 °C; (iv) an absorption spectrum that overlaps with the
blue LED emission spectrum; (v) a large absorption cross section; and
(vi) an emission spectrum that leads to high-quality white-light
emission. Therefore, one of the greatest remaining challenges in SSL
is the difficulty associated with simultaneously tuning the chemical,
structural and optical characteristics of the phosphor material that
fulfills the above requirements. This challenge has become the subject
of extensive research in materials science66–73.
Currently, the leading commercial methodology for obtaining white

light using phosphors, so-called phosphor-converted LEDs (pcLEDs),
uses yttrium aluminum garnet (YAG, Y3Al5O12) doped with Ce3+

rare-earth ions (YAG:Ce) as the phosphor. Phosphors based on rare-
earth ions have low absorption coefficients in the blue region, resulting
in the need for a relatively large amount of material (the typical
thickness of such phosphors is on the order of several tens of
microns). Such phosphor layers incorporate randomly positioned
light scatterers that maximize light extraction74–76, albeit with a

Lambertian angular profile. Moreover, approximately half of the
converted light exits the phosphor layer in the backward direction,
that is, toward the blue LED. For these reasons, additional optical
elements, such as mirrors or scattering materials, are incorporated into
the device to maximize light output.

Efficiency of LEDs
In general terms, the efficiency of a light-emitting device is the product
of three partial efficiencies:

Z ¼ Zexc � Zrad � Zext ð1Þ
ηexc is the excitation efficiency. In the case of electrically driven
devices, it represents the fraction of injected carriers that recombine in
the active region. In the case of optically pumped devices, it accounts
for the absorption efficiency of the phosphor. ηrad is the radiative
efficiency, often referred to as the internal quantum efficiency or QY.
It represents the fraction of the excited or injected electron–hole pairs
that recombine to emit a photon, and it is defined as the ratio of the
radiative rate to the total recombination rate. The last factor in
Equation (1) is the extraction efficiency ηext, which is the fraction of
blue/green/red light that escapes the device into free space. Because
emitted light can be trapped within the device (via total internal
reflection) and eventually absorbed, many light-emitting devices rely
on the integration of light-extracting structures to increase ηext. In
addition to efficiency, other parameters defining the color of the
emission must be assessed when developing new LEDs77.

Metals and light emission
Recently, various arrangements of metallic nanostructures have been
proposed as a means of controlling light emission15–33. Research
efforts in nanophotonics have mainly focused on using nanostructures
to improve ηrad via modification of the local density of optical states to
which an emitter can decay15,78. For low-QY emitters (for example,
QYo0.3), this approach leads to a significantly brighter source.
However, emitters with QY ca. 100% are readily available for use in
SSL. Therefore, enhancing the QY of poor emitters is not necessary for
SSL applications. In fact, metallic nanostructures may reduce the
overall efficiency of phosphor-based devices. Where metallic nanos-
tructures benefit emission wavelength is in extracting specific emission
colors in defined directions, thereby controlling the angular and
spectral distributions of emitted light without diminishing significantly
the device efficiency. Regarding ηexc, optical losses occurring at the
excitation wavelength associated with the permittivity of metals are
expected to be among the main limitations with regard to the overall
efficiencies of plasmonic pcLEDs. A recent article addresses the role of
metal absorption in the external QY of emitters coupled to arrays
of plasmonic nanoparticles. It concludes that due to the reduced
fraction of light absorbed by the metal nanoparticles control of the
illumination conditions of the arrays can provide significant QY
enhancement79.
SPPs are surface waves at the interface between a metal and a

dielectric that are characterized by the manner in which they
propagate along the surface while decaying evanescently away from
it. These characteristics depend on the permittivities of the metal and
the dielectric. SPPs result from the coherent oscillations, driven by the
electromagnetic field, of the charge carriers in the metal. Emissions
from sources in proximity to a metallic layer are strongly modified via
the excitation of SPPs, which can be coupled to free space radiation by
structuring the metal surface. A number of calculations describing the
SPP modification of exciton decay rates have been reported40,80–83. As
illustrated in Figure 2, SPP-coupled emission can be described
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Figure 1 Scheme depicting a pcLED. An electrically biased LED emits blue
light, which excites the phosphor material. The mixing of the emission from
the phosphor and the non-absorbed blue light is perceived as white light by
the human eye.
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according to a simple model based on coupling rates, in which the
transfer of energy from the emitter to the plasmon modes occurs,
followed by the radiative coupling of the plasmon modes into
radiation. As discussed in the next section, this coupling has been
used to improve the emission of LEDs. Complementary to metal layers
are metal nanostructures that support localized optical resonances
known as localized surface plasmon resonances (LSPRs). The LSPR
frequency and linewidth depend on the geometry and size of the
nanoparticles84, the permittivity of the metal and the surrounding
medium. For emitters in close proximity to metallic nanoparticles, the
fluorescence can be modified via processes occurring at the excitation
and/or the emission wavelengths15,17, thereby involving all three terms
in Equation (1). In addition, fluorescence enhancement depends
strongly on the QY of the emitter81,85–90. Indeed, for high-QY emitters
distributed over large areas, very little improvement of the QY can be
obtained when using nanostructures that only modify the emissions of
highly localized sources in their proximity80. Nevertheless, the
directionality of the emission of a localized source coupled to a
resonant metal nanoparticle can be modified as illustrated in
Figure 3a.
Individual nanoantennas may be used to modify the emission of

quantum wells, but they are not an option for influencing the
emission of the much thicker phosphor layers. To circumvent this
limitation, nanoparticles can be arranged in periodic arrays, such that
their optical response is reinforced through coherent scattering. This
leads to a collective plasmonic–photonic resonance first described by
Carron et al.91. and Markel92 in the context of surface-enhanced
Raman scattering. Schatz and co-workers later revived interest in this
collective resonance phenomenon via a series of theoretical papers that
demonstrate the emergence of very sharp resonances (ca. 1-meV
linewidth) in the extinction spectra of arrays composed of metal
nanoparticles93–103. Such sharp resonances signify the extremely low
radiation losses that collective resonances feature. In-plane scattering
by the nanoparticles and phase accumulation of these scattered fields
govern the optical response of the array104. Periodic arrays in
homogeneous dielectrics are characterized by narrow resonances called
surface lattice resonances (SLRs). Interestingly, SLRs with linewidths as
narrow as ca. 8 meV have been obtained experimentally using carefully
designed periodic arrangements of gold nanorods103. These comprise
the sharpest plasmonic resonances ever reported, reaching values close
to those theoretically predicted by Schatz, which are the limit of
meaningful expectations for lighting applications. In addition, if an
optical waveguide is placed near the array, waveguide-plasmon

polaritons can be excited105–108. In the case of SLRs, the nanoparticles
interact with Rayleigh anomalies, which are the onset of diffraction
orders, that is, the frequency at which diffraction orders propagate in
the plane of the array. This in-plane diffraction enhances the radiative
coupling between the individual nanoparticles, giving rise to a
collective resonance. For waveguide-plasmon polaritons, this radiative
coupling between nanoparticles is enhanced by guided modes in high-
refractive index layers108. In the particular case of light emission,
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Figure 2 Sketch of the surface plasmon-coupled emission. It illustrates the
coupling of an emitter into a SPP with the subsequent coupling of the
energy of this plasmon mode into the radiation continuum. Reprinted with
permission from Ref. 82. Copyright 2008 Optical Society of America.
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Figure 3 (a) Sketch of the interaction between a light emitter and an optical
antenna. Reprinted with permission from Ref. 25. Copyright 2009 Optical
Society of America. Side view of the simulated spatial field distribution in
three unit cells of the array at a frequency corresponding to (b) a localized
surface plasmon resonance and (c) a collective resonance33.
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emitters in the proximity of an array can decay into either of these
collective resonances and consequently radiate into free space with a
spectrum and directionality determined by the dispersion of these
collective modes107,108.
Figure 3b and 3c illustrates the electromagnetic field enhancements

characteristic of two distinct resonances in a periodic array of metal
nanoparticles. Figure 3b represents a cross section at the LSPR
condition. Associated with the LSPRs is a large electromagnetic field
enhancement that is highly localized to the individual particles, as seen
near the base of the nanostructures in Figure 3b. In contrast, Figure 3c
shows a collective resonance where the field is enhanced over a much
larger volume. These extended field enhancements enable circumven-
tion of the limitations regarding critical placement of the emitter
relative to the metal nanoparticles109. Moreover, the emission from
such an extended state can be highly directional110,111, as shown
below. These are the key advantages of using collective resonances for
modifying the emission of phosphor layers33. The metallic nanopar-
ticle array behaves as a phased array of optical antennas, with the
relative phases between antennas determined by their resonant
responses and separations. The radiation patterns of subwavelength
sources are modified by coherent scattering within the periodically
spaced metal nanoparticles112.
It is noteworthy that although this review focuses on the impact of

metallic nanostructures on the performance of light-emitting devices,
metallic and dielectric nanostructures represent complementary
approaches to modifying the emission properties of light sources.
Several reviews that discuss modification of the emission character-
istics of LEDs using dielectric materials have been reported in the past
few years113–115. In particular, wavelength-sized dielectric structures
have demonstrated improved light extraction116–118, and accurate
control of radiation patterns119 and polarizations120. A recent report
demonstrated that the effects of periodic arrays of Si nanoparticles on
the performance of thin layers of emitters are similar to those of their
plasmonic counterparts121. Choosing between metals and dielectrics
for enhancement of light emission will depend on fabrication
constraints and/or the limitations associated with the particular goal.

PLASMONIC-BASED LIGHT EMISSION ENHANCEMENT

Plasmon-enhanced emission from quantum wells
In this section we focus on the different nanophotonics-based
approaches that have been used to improve the efficiencies of
inorganic semiconductor LEDs. Inorganic blue LEDs that are based
on InGaN/GaN multi-quantum-well heterostructures are currently
used in advanced architectures to obtain white-light emission. How-
ever, light generated in the active region of the multi-quantum-well
structure can be reflected at the interfaces and trapped in the layered
structure before it reaches the phosphor. To remedy this and
maximize light extraction, metallic surfaces and nanostructures have
been used.
The metallic thin films used with SPPs have been applied directly to

LEDs to enhance the spontaneous emission rate of excitons in
quantum wells and, therefore, the QY37,39–41,122–124. The process can
be explained as follows. Electron–hole pairs are injected in the active
region of the LED. When a metal layer is grown at a distance smaller
than the evanescent decay length of the SPPs, the electron–hole pairs
recombine, giving their energy to the SPPs. Thus, the metal provides
additional states for exciton recombination125. This enhanced density
of states for exciton recombination can significantly increase the
recombination rate. Because SPPs are evanescent surface waves, they
cannot radiate to free space. The metallic surface can be made rough
to efficiently couple SPPs to free space radiation and enhance the

emission intensity. To illustrate this effect, Figure 4a shows the
photoluminescence intensity spectrum for different metal layers
deposited over the blue LED at a distance of 10 nm. Enhancement
of the visible light emission originates from a combined higher
recombination rate and a higher quantum-well extraction efficiency
enabled by the nanometer-sized roughness in the metal layer.
Although such random textures result in improved extraction
efficiencies, they provide little control over the directionality of the
emitted light, which typically displays a Lambertian profile127.
Accurate control over the angular distribution of the emission can

be achieved using metallic nanostructures, which are directly fabri-
cated, with predetermined geometries and dimensions, on the emissive
semiconductor surface80,128–130. Aperiodic designs may also be used to
avoid undesirable angular and/or spectral dependencies131. Unidirec-
tional beaming of the LED emission has been recently demonstrated
using a periodic array of optical antennas with specifically designed
geometries126. Figure 4b shows the far-field radiation pattern of such a
nanostructured blue LED. In the absence of the metallic nanostruc-
ture, a broad Lambertian emission is observed (blue dashed dotted
curve). The silver flat film causes a substantial reduction in the
intensity of the emitted light for both polarizations (green dashed
curve), because no mechanism is provided to scatter the excited SPPs
into radiation. In contrast, in the direction of the maximum intensity
for one polarization, the output intensity of the LED with metallic
nanostructures (black dotted and red solid curves) is enhanced
compared with that of the flat sample. This polarization dependence
can be attributed to the asymmetric shape of the nanostructures.
Emission enhancements with a preferential light polarization can be
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Figure 4 (a) Photoluminescence spectra of blue LEDs coated with Ag, Al
and Au. The enhanced emission of the coated LEDs is due to the
outcoupling of SPPs with the roughness of the metal to far-field radiation.
Reprinted by permission from Macmillan Publishers Ltd122, copyright 2004.
(b) Far-field radiation patterns of blue LEDs that feature a one-dimensional
grating (red solid curve) and triangular nanoantennas (black dotted curve),
compared with those of the bare LED sample (blue dashed–dotted curve)
and a flat metallic coating (green dashed curve). Reprinted with permission
from Ref. 126. Copyright 2013, AIP Publishing LLC.
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beneficial for applications where light impinges upon smooth surfaces
at nearly grazing angles, for example, automotive lighting. In these
cases, it may be desirable to selectively enhance the emission obtained
for one polarization only, because the other polarization may lead to
unwanted effects, such as glare from incoming drivers.

Plasmon-enhanced emission from phosphor layers
We now turn our attention to emission modifications obtained using
extended emitting layers. Phosphor layers are typically much thicker
than quantum wells. The potential of metallic nanoparticle arrays to
modify the Lambertian emission from such thick luminescent layers
has been demonstrated in several reports24–33,42,108,132,133. This section
provides few examples of how these arrays modify the emissions of
layers of emitters. In contrast to LSPRs, which are usually character-
ized by their broadband responses and weak angular dependence,
collective plasmonic–photonic resonances in antenna arrays can be
spectrally very narrow and exhibit strong angular dependence.
Vecchi et al.24 first demonstrated the use of collective plasmonic

resonances to modify the emission of luminescence layers, using near-
infrared-emitting dye molecules and arrays of gold nanoparticles.
Lozano et al.33 proposed that these systems be applied to SSL by using
highly efficient visible-light-emitting dye molecules as extended
phosphor layers and arrays of aluminum nanoparticles. In this work,
a sample such as the one shown in Figure 5a was used to enhance the
emission of a 700-nm-thick phosphor layer consisting of a high-QY
and a photo-stable dye by more than a factor of 60 at certain
wavelengths and in defined directions. This enhancement is illustrated
in Figure 5b and 5c for normal incidence, where the extinction and
photoluminescence enhancement (PLE) spectra are displayed, respec-
tively. The latter is given by the ratio of the emission from the dye
layer with and without the nanoantenna array. The enhanced
directional emission can be described as follows. The photo-excited

dye molecules relax, exciting collective resonances in the particle array.
The periodic structure of the array is responsible for the directional
outcoupling of the emission in defined directions. The narrow
linewidths of the emission associated with the collective modes are a
direct consequence of the enhancement of the spatial coherence of the
emission due to the coherent scattering by the nanoantennas. The
60-factor fluorescence enhancement of Ref. 33 can be attributed
to a ca. 6-fold enhancement of the excitation efficiency (ηexc)
and a ca. 10-fold enhancement of the extraction efficiency (ηext).
Moreover, based on time-resolved measurements, only a very small
modification of the QY was determined (ca. 15% degradation at
most). A visualization of this enhanced emission is shown in
Figure 5d, which is a photograph of the emission of a phosphor layer
on top of a nanoantenna array (right side). For direct comparison, a
reference sample consisting of the phosphor layer with the same
thickness but without the antenna array is also shown (left side).
The directionality of this emission enhancement can be controlled

depending on the application. Figure 5e–5h highlights recent results
demonstrating tailored enhanced directional emission in narrow
angular ranges for red light (λ= 620 nm) with hexagonal arrays of
nanoantennas42. This spectral region is of particular interest with
regard to achieving warm white light in SSL applications. High
symmetry lattices, such as the hexagonal array, facilitate a more
homogeneous distribution of the emission over the azimuthal angle, as
shown in the photoluminescence intensity polar plot measurements
displayed in Figure 5e–5h. Manipulating the separation distance
between aluminum particles enables accurate control over the
directionality of the red emitted light in pcLEDs42.
The inclusion of metallic nanoparticles minimizes the need for

optical components in LEDs, such as parabolic mirrors or condenser
lenses that are used for beaming the emission. These optical elements
are often bulky, increasing the total size of the LEDs and limiting their
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Figure 5 (a) Scanning electron micrograph of a square array of aluminum nanoparticles. The inset is a sketch of a metal nanoparticle array pcLED, where the
phosphor layer is represented by the transparent red layer. (b) Extinction and (c) PLE of an aluminum nanoparticle array covered by a thin phosphor layer.
Reprinted with permission from Macmillan Publishers Ltd33, copyright 2013. (d) Photograph of the emission of a standard pcLED (left) and a pcLED that
exhibits enhanced emission due to the integration of a hexagonal array of metal nanoparticles (right). (e) Fourier image of the unpolarized red emission (610–
620 nm) of an unstructured pcLED. (f–h) Fourier images of the unpolarized red emission of a similar pcLED that features a hexagonal array of Al
nanoparticles with lattice constants (f) 475 nm, (g) 425 nm and (h) 375 nm. Reproduced from Ref. 42 with permission from The Royal Society of Chemistry.
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integration. Therefore, the performance of metallic nanoparticle arrays
in SSL applications must be assessed in terms of overall system
efficiency with and without the presence of the metallic nanoparticle
arrays. From a device perspective, the enhancement of phosphor-layer
emissions enabled by the use of nanoparticles must not only be
compared with emissions obtained from the same layer when no
nanoparticles are used. We must also compare the results obtained
with the same phosphor layer under conditions in which the usual
secondary optical elements are in place.
An additional advantage of nanoantenna-enhanced emission is that

it also reduces the phosphor-layer thickness, which is important with
regard to heat dissipation. Heat reduces emission efficiency, limiting
the performance of LEDs. So far, it has not been easy to use thin layers
in pcLEDs owing to their low blue absorption; the conversion
efficiencies of these layers have not been sufficient to generate the
desired emission spectrum. Therefore, the combination of metallic
arrays and new phosphors, such as dye molecules or quantum dots,
enables the use of layers that are much thinner than standard YAG:Ce
pallets, resulting in improved heat management and high extraction
efficiencies.

OUTLOOK AND CONCLUSIONS

LEDs constitute a new technology that is currently driving substantial
changes in the way artificial light is generated. Metallic nanostructures
enable strong light–matter interactions that facilitate unprecedented
improvements in the emission intensities, colors and directionalities of
light sources positioned nearby. This review presents and discusses
new methods for enhancing the efficiency of LEDs using metals
structured on the nanometer scale. We have provided a general
overview of state-of-the-art LED lighting, discussing the main
requirements of both quantum wells and phosphors for efficient
generation of white light. We also discuss the main challenges facing
researchers in this regard and the potential of plasmonics to overcome
them. In what follows, we highlight a few recent findings in
plasmonics that may lead to new illumination solutions and provide
perspectives for future progress.
Several applications, for example, screen or automotive lighting,

require light to be directed in only one direction. For planar
structures, such as shallow nanoantenna arrays, light beaming into
small angles is enhanced with roughly equal strengths in the forward
and backward directions. The light emitted backward must be recycled
using secondary optics, resulting in losses. To address this issue, the
forward–backward light emission symmetry of planar structures can
be broken by integrating an array of nanostructures with a pyramidal
shape into the fluorescent layer134. Figure 6 shows the PLE spectrum
of an aluminum nanopyramid array. Notice that the PLE differs
toward the top (black curve) and bottom (red curve) of the
nanopyramids. At the LSPR wavelength (~650 nm), the nanopyramid
array beams more light toward the bottom of the pyramids.
The opposite occurs at the SLR wavelength (~585 nm). These
effects are due to the enhanced magnetoelectric response of the
nanopyramid array (magnetic dipole moments are excited via the
electric field of light), which originates from the pyramidal shape and
height of the nanostructures134. Future research should further
investigate these phenomena in order to increase emission asymmetry
and maximize the fraction of the emitted intensity that can be
efficiently used in SSL.
Beyond passive spectral and directional control of light emission, a

long-standing goal in nanophotonics is to actively control emitted light
properties by means of an external tuning parameter. This can be
achieved by incorporating materials with optical properties that

depend on applied voltages, heat, strain or illumination
profiles135–138. Liquid crystals are particularly interesting in this regard.
Their tunable orientations have been used to actively control the
properties of LSPRs and SPPs139–145. Active light emission from
antenna arrays has recently been demonstrated with liquid
crystals146. Further research in this regard is sure to attain active
control of the color, direction, polarization and intensity of emission
from pcLEDs.
Thus far, the examples of spontaneous emission modifications of

light emitters coupled to plasmonic resonances provided in this review
involve the so-called weak coupling regime. Recently, strong coupling
has attracted more attention. Strong coupling is characterized by an
emitter–resonator energy exchange rate that exceeds all loss rates. The
energy exchange rate between an ensemble of emitters, such as those
found in macroscopic light-emitting devices, and an optical mode
depends on the concentrations of the emitters. When the collective
oscillator strength of the ensemble of emitters becomes comparable to
that of the optical mode, that is, at high densities of emitters, mixed
light–matter states known as polaritons can be created. Strong
coupling between emitters and SPPs has been investigated with regard
to propagating modes in flat147–149 and perforated150–152 metallic
layers, as well as creating localized modes in nanostructures153–156.
Recently, strong coupling between SLRs and emitters has also been
observed157–159. Törma and Barnes160 have recently published a review
article in this emerging field. Although the physics of strongly coupled
plasmon-emitter systems is very rich, and the prospect of strongly
interacting emitters is exciting, the potential of these systems for
use in light-emitting devices has rarely been discussed. One of the
challenges in this regard is related to the poor QY that phosphor layers
with high densities of organic molecules display. Although it is
required to access the strong coupling regime, a high molecular
density degrades the QY of the ensemble via an effect known as
‘concentration quenching’161. Therefore, challenges remain with
regard to improving high-QY light-emitting devices via strong
emitter–plasmon coupling.
Laser diodes are being considered as an alternative to LEDs for

future SSL applications to circumvent the strong reduction of ηrad that
blue LEDs experience at high current densities. This issue, called the
efficiency droop162–164, is one of the biggest challenges with regard to
utilizing blue-light-emitting materials and devices for SSL165. Photonic
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band-edge lasers have been extensively investigated during the past
two decades166–169. Plasmonic nanolasers provide faster dynamics and
offer the opportunity to realize ultracompact devices at the expense of
beam directionality170. Diffractive plasmon lattices overcome this
limitation32,171–175. Figure 7a displays the lasing threshold curve for
an Au particle array combined with a dye-doped polymer acting as a
gain medium32. Figure 7b and 7c shows the Fourier images of the
emissions below and above threshold for an array made of Ag
nanoparticles, respectively, illustrating the highly directional nature
of the lasing mode. Moreover, it has been demonstrated that the lasing
modes in these sorts of arrays can be modified with liquids of different
indexes of refraction, as illustrated in Figure 7d175.
In conclusion, we have reviewed different metallic nanostructures

that provide new possibilities for efficient light management in the
next generation of LED devices. A central goal of SSL technology is to
replace all incandescent light bulbs worldwide. Consequently, effi-
ciency and cost are currently driving the market. Solutions implying
an increase in the overall cost of the lighting device are currently not
viable for general lighting purposes. However, this situation will
change if the market becomes design- or performance-driven or once
the first generation of LED luminaires becomes obsolete. Such a
paradigm shift will open the door to the integration of cost-effective
nanophotonic structures, which will in turn enable realization of more
compact devices with fine control over the intensity, directionality and
color quality of the resulting emitted light. Several parameters are
typically used to assess the performance of LED-based lighting, that is,
quantum efficiency, luminous efficacy, correlated color temperature
and color-rendering index (CRI), and maximizing all of them
simultaneously is unfeasible. Indeed, there exists a clear trade-off
between luminous efficacy and light quality. White-light sources
require an emission spectrum that extends throughout the visible

range, thereby significantly reducing their maximum luminous efficacy
(which is attained for a light source that converts 100% of its electrical
power into green radiation, to which the human eye is most sensitive).
A wide variety of applications can benefit from LED devices that
integrate different emission characteristics. In particular, for general
illumination applications, the light source must show a high correlated
color temperature as well as a CRI of at least 90 and a uniform color-
over-angle. Even higher CRI values, that is, toward 100, are required in
museums or in retail businesses. In contrast, highly directional sources
are sought for automotive lighting, where the compactness and the
freedom to design the esthetics of the light source are more important
than the efficiency or quality of the emitted light. Finally, directional
narrowband sources are needed in the light guides used in screens.
Metallic nanostructures offer new opportunities for tailoring the
emission spectra of luminescent materials that compose emitting
devices as well as associated angular dependence. Such fine emission
control, as illustrated by the different approaches highlighted in this
review, should certainly improve the performances of devices designed
to for the aforementioned applications. The overall benefit of
nanostructures is, in many cases, still limited due to increased
complexities in device fabrication. Nonetheless, tuning light emission
in LEDs continues to be a key challenge of fundamentally interest and
technological relevance.
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