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ABSTRACT: We investigate the radiative coupling between localized surface plasmon
resonances (LSPRs) and Rayleigh anomalies (RAs) in periodic arrays of metallic nanorods
with varying dimensions but equal lattice constants. The dimensions of the nanorods determine
the energy and line width of the LSPR and, thus, enable tailoring of the mixed LSPR−RA states:
surface lattice resonances (SLRs). We present variable angle light extinction experimental
spectra for five arrays with different nanorod width and explain our results with numerical
simulations. The numerical simulations are done for driven and undriven systems, with the latter
revealing the SLR eigenmode properties for the first time. We provide a plane wave model that
interprets the near- and far-fields of these eigenmodes, describing the intricate behavior of
confinement and radiative loss versus in-plane momentum. The SLR line width, band gap
associated with the coupled modes, and field extension into the surrounding dielectric are
tunable via the dimensions of the nanorods.
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Surface electromagnetic modes in metallic nanostructures
have attracted a broad scientific interest, as they lead to a

rich optical response that is tunable by geometrical design.1

When the electromagnetic fields associated with two distinct
surface modes overlap spatially, the modes can couple and their
properties (e.g., their energy dispersion and line width) are
altered according to the coupling strength. Coupled surface
modes have been observed in metallic gratings,2−5 subwave-
length hole arrays,6−9 nanoslit arrays,10,11 stacked plasmonic
nanowire arrays,12 and particle arrays coupled to waveguide
modes.13,14 In recent years periodic arrays of metallic
nanoparticles have attracted much attention for their ability
to support collective resonances arising from the radiative
coupling between localized surface plasmon resonances
(LSPRs) and waves diffracted in the plane of the array
[Rayleigh anomalies (RAs)].15−25 These collective resonances,
also known as surface lattice resonances (SLRs), have quality
factors Q depending on the number of particles in the array,26

and their dispersion and line width are tunable via the particle
geometry and lattice constant.23,25 Recent work has shown the
relevance of SLRs for enhancing the spontaneous emission of
luminescent molecules or quantum dots within the vicinity of
the array,27−29 for lasing,30 and for refractive index sensing.31

Despite the numerous fundamental and applied studies
concerning SLRs, their general properties in terms of the
coupling conditions between the participating plasmonic and
photonic modes are limitedly explored. In this sense,
remarkable insight was obtained by Barnes and co-workers
regarding the coupling between distinct surface plasmon
polaritons in metallic sinusoidal gratings.3 However, the
analysis contained therein is not easily extended to more
complex plasmonic structures, which renders difficult the
emergence of a simple, intuitive explanation on the character-
istics of the coupled surface modes. Another important study
was presented recently by Teperik and Degiron,25 who
explained how the SLR energy and line width (at normal
incidence only) can be tuned by tailoring the polarizability
tensor describing the nanoparticles. While such an approach is
appealing from a theoretical standpoint, experimental imple-
mentation is difficult, as it requires a priori knowledge of how
the particle dimensions (the experimentalist’s turning knob)
relate to the polarizability tensor.
It is the aim of this work to elucidate how the SLR

characteristics depend on the spectral properties of the
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interacting RAs and LSPRs, which are in turn determined by
simple structural design. We focus on nanorod arrays where
RAs associated with two diffraction orders [(+1,0) and (−1,0)]
interact with a single first-order LSPR. Experimental extinction
spectra of arrays with nanorods of different dimensions are
investigated. The nanorod dimensions determine the energy
and line width of the LSPR and, thus, the detuning with respect
to the RAs in arrays with fixed periodicity. We focus on the case
of light polarized along the width of the nanorod where the
LSPR red-shifts and broadens for increasing nanorod width due
to the depolarization field along this dimension.32 Our work
analyzes how this changes the coupling of the LSPR to the RAs.
We shed light on the physics through transmission and
eigenmode simulations using finite element based methods.
The eigenmode numerical simulations illustrate how the SLR
field profile varies for different LSPR−RA energy detunings,
including changes in in-plane momentum. Finally these
eigenmode profiles are described by a straightforward plane
wave model, elucidating the subtle interferences at play.

■ EXPERIMENTAL RESULTS
We fabricated five gold nanorod arrays with varying nanorod
widths (w) of 70, 110, 160, 200, and 230 nm (in the y
direction) but an equal nanorod length of 450 nm (in the x
direction) on a silica substrate using electron beam lithography.
The arrays have dimensions of 1.5 × 1.5 mm2 and lattice
constants ax = 600 nm and ay = 300 nm. The nanorods have an
approximately rectangular shape in the plane of the array and a
height of 40 ± 2 nm. The rod width was tuned by varying the
exposure dose of the electron beam. The tolerances of the in-
plane dimensions are on the order of nanometers. The arrays
were embedded in a uniform surrounding medium by placing a
silica superstrate preceded by n = 1.45 index matching fluid to
ensure good optical contact.
Figure 1a−e shows the extinction of y-polarized light, defined

as 1 − T0, with T0 the zeroth-order transmittance, for the five
arrays described above. The extinction is displayed in color as a
function of the incident photon energy and component of the
wave vector parallel to the surface in the x direction, which is

given by k// = (E/ℏc)sin(θ), with θ the angle of incidence from
the normal. The samples were rotated around the y-axis, while
the y-polarized collimated beam from a halogen lamp impinged
onto the sample, probing the short axis of the nanorods.
The dispersionless and broad extinction peak seen on the

high-energy side of the extinction spectra for all five arrays
corresponds to the excitation of LSPRs in the individual
nanorods. The cyan solid and dashed lines indicate the (−1,0)
and (+1,0) RAs, respectively. The RAs are solutions to the
equation E± = (ℏc/n)|k// + mGx|, where m = ±1 is the order of
diffraction, and Gx = 2π/ax is the x-component of the reciprocal
lattice vector. The coupling of LSPR to the RAs yields the
upper and lower SLRs. The SLRs are dispersive bands in
extinction with variable line width, following the dispersion of
the RAs on the low-energy side. Notice that, at k// = 0, the
upper SLR is bright (i.e., it is excited strongly by the incident
plane wave), while the lower SLR is dark (i.e., it is not excited
at all). The bright/dark SLR mutual coupling leads to an energy
stop-gap near the intersection of the RAs.23 We note that this is
not a complete band gap, since it exists only for light polarized
parallel to the short axis of the nanorods (y direction) and with
an in-plane wave vector component parallel to the long axis of
the nanorods. For light polarized parallel to the long axis of the
nanorods, the dipolar LSPR lies at lower energies than the
(±1,0) diffraction orders at normal incidence, which results in a
weak diffractive coupling.20 On the other hand, for an in-plane
wave vector component parallel to the short axis of the
nanorods, the (±1,0) Rayleigh anomalies are degenerate,
leading to degenerate (±1,0) SLRs and therefore to the
absence of a gap.33

The measurements in Figure 1a−e show a clear correlation
between the SLR characteristics and the spectral properties of
the LSPR. As the LSPR broadens and approaches the RAs in
energy upon increase of w, the SLRs shift toward lower
energies, their line widths broaden, and the gap between them
widens. Additionally, the SLR dispersion deviates more strongly
from the associated RA for increasing w. This indicates that the
coupling strength between LSPRs and RAs increases. The
broadening of the SLR line width, which implies increased

Figure 1. Experimentally measured extinction for (a) w = 70 nm, (b) w = 110 nm, (c) w = 160 nm, (d) w = 200 nm, and (e) w = 230 nm. (f)
Experimental extinction at k// = 0 for w = 110 nm array, fitted with a Fano resonance (red dashed lines) for the upper SLR. The inset in (f) shows
the SEM picture of the nanorod array with w = 110 nm.
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losses, can be understood on the basis of the increased
influence from the lossy LSPR. The effect of LSPR−RA energy
detuning can also be observed in the SLR dispersion of each
array. As k// increases, the detuning between the upper SLR
and LSPR diminishes. Consequently, the SLR line width
broadens and its peak energy deviates more pronouncedly from
the (+1,0) RA. In contrast, the lower SLR becomes narrower
and approaches the (−1,0) RA as it becomes more detuned
from the LSPR.
The SLRs can exhibit relatively narrow line widths for

plasmonic-type resonances. To obtain the line widths of these
SLRs, we fit the extinction measurements with a Fano model of
the form F = A0 + A[(qα/2 + E − Eo)

2/[(E − E0)
2 + (α/2)2].

A0, A, q, α, and E0 are the fitting parameters, which we
determine by a least-squares method. Figure 1f shows the Fano
fit of the upper SLR at k// = 0 for w = 110 nm, from which we
obtain the line width (α) to be 8.29 ± 0.56 meV and resonant
frequency (E0) to be 1.413 eV ± 0.269 meV. The Fano shape
of SLRs can be expected as they arise from the coupling
between a broad LSPR and narrow RA resonances.23,34 These
resonances, commonly arising from a broad resonance
interacting with narrow resonances, have been found in various
other plasmonic systems.34−36

■ NUMERICAL RESULTS

Eigenmode and Transmission Calculations. By finite
element method simulations (COMSOL), we now examine the
SLR characteristics in the presence and absence of a driving
optical field. In the transmission simulations, we use plane wave
illumination coming in at various angles as the driving field to
obtain the extinction spectra. The extinction was calculated as 1
− T0, with T0 the zeroth-order transmission obtained by
Fourier decomposition. Figure 2a shows a sketch of the
nanorods in the simulated arrays. Figure 2b shows the
simulated extinction of the w = 110 nm array. Our simulations
capture well the SLR characteristics observed in the measure-
ments, and similar agreement was obtained for other arrays.
The SLR peak energies obtained from the transmission
simulations serve as an initial guess and check for the
eigenenergies in the undriven case obtained from eigenmode
calculations. With the eigenmode simulations, we focused on
finding the SLRs that are Bloch modes that propagate in the
plane of the array along the x direction. The SLR eigenenergies
calculated at a few values of k// are plotted as white circles in
Figure 2b. The good agreement of the SLR dispersion obtained

with eigenmode and transmission simulations confirms that the
obtained Bloch modes are indeed SLRs.

Having validated our simulations, we now examine the SLR
eigenmode field profiles. The y-component of the eigenfield, Ey,
is shown in Figure 3 for the upper and lower SLRs at k// = 0 in
the w = 110 nm array. In both planes (xz and xy) intersecting
the unit cell at its center, it is shown that the eigenfield Ey has
even parity for the upper SLR and odd parity for the lower SLR
(with respect to the yz-plane through the particle center). The
odd parity of the lower SLR renders the mode dark at normal
incidence; that is, it cannot be excited by an incoming plane
wave. On the other hand, the upper SLR clearly has a field
profile that is not strictly confined to the nanorod, as it has a
radiative component unlike the lower SLR. The symmetries of
the upper and lower SLR eigenfields are the same for arrays
with different w (other dimensions fixed), but the SLR
eigenenergies change. In Figure 4 we show how, as w increases
and the LSPR−RA energy detuning decreases, the SLRs are
shifted to lower energies and the gap widens, in agreement with
our measurements (k// = 0 in Figure 1a−e).
In Figure 5 we present the magnitude of the total SLR

eigenfields for arrays with different w. The upper and lower
SLR are shown in Figure 5a and b, respectively. The near-field
confinement of both SLRs is enhanced as w increases. This
effect is more clearly visible for the lower SLR, as this mode
lacks a radiative component. In contrast, the upper SLR retains
a radiative component for all w. Concentrating on the spatial

Figure 2. (a) Diagram of the simulated nanorods. (b) Simulated extinction (color plot) dispersion for w = 110 nm. White markers indicate the
eigenfrequencies of the SLR modes obtained through eigenfrequency calculations. Circle and square markers indicate data points for upper and
lower SLR, respectively.

Figure 3. Eigenmode Ey plot cross sections of bright and dark modes
at the xz- and xy-plane through the center of the nanorods for w = 110
nm at k// = 0.
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region away from the nanorods in Figure 5a, we observe that
the magnitude of the eigenfield increases as w increases. Since
the fields in this region are mostly radiative in character, it
follows that the radiative portion of the total loss also increases
with increasing w for the upper SLR. This effect, in
combination with the increased near-field confinement, which
naturally leads to larger ohmic losses, can thus be expected to
increase the line width of the upper SLR at k// = 0 in the driven
system. The latter observation is very clear from the
experiments (Figure 1a−e).
To further elucidate the trends in Figure 5, we show cross

sections of the normalized eigenfield magnitude in Figure 6.
The cross sections are taken along the dashed line in Figure 5
and normalized to the first maximum encountered in the
dielectric medium. The upper SLR eigenfields in Figure 6a
display oscillations due to interference between the near-field
and far-field (radiative) components of the eigenmode. In the
far-field regime away from the nanorods, the magnitude reaches
a “plateau”. This asymptotic behavior can be seen in Figure 6a
for the nanorod array of w = 160 nm starting at a distance of 1.5
μm and is more apparent for arrays of wider nanorods. The
radiative component of the upper SLR dominates in the region
where this plateau sets in. The plateau indicates coupling of the
upper SLR to a single radiative plane wave channel, as will be
demonstrated more clearly later in the discussion of radiative
losses and in the Plane Wave Model section. The onset of the

plateau is more clearly visible for wider nanorods, as it occurs at
shorter distances away from the nanorods due to the near-field
portion of the mode being more tightly confined. The physics
are simpler for the lower SLR eigenfield, which decreases
monotonously in the dielectric medium as shown in Figure 6b.
The inset in Figure 6b shows a plot of the spatial extent of the
upper and lower SLR eigenmodes as a function of w. The mode
extension is taken to be the distance where the eigenfield
magnitude drops to 1/e for the first time after the normalization
point. There, it can be observed that both SLR eigenmodes
become increasingly confined for wider nanorods, again
consistent with increasing losses and experimentally observed
increasing line widths for the bright mode at k// = 0 in Figure 1.
Having established how the nanorod width influences the

SLR eigenmode characteristics at k// = 0, we now examine the
dependence on k// . Naturally, this dependence is different for
the upper and lower SLR eigenmodes. Figure 7a shows a plot of
the total electric eigenfield magnitude (color plot) and
Poynting vector (arrows) for w = 110 nm at different k// for
the upper SLR. Therein, we identify different regimes
depending on the value of k//. In the low-momentum regime
(k// ≤ 0.16 rad/μm), the eigenfield magnitude far away from
the nanorods (>1 μm) increases relative to the magnitude in
the near-field as k// increases. As in the case of the nanorod
widening, this apparent increase of far-field magnitude suggests
an increase in radiative losses at intermediate k//, which will be
discussed later. For higher momenta (k// ≥ 0.16 rad/μm), the
eigenfield magnitude away from the nanorods (>1 μm)
decreases relative to the magnitude in the near-field. This
trend at high k// is due to the increase of near-field confinement
as the SLR approaches the LSPR and obtains a more localized
nature.
As before, the eigenfield profile evolution of the lower SLR is

more monotonic (Figure 7b). As k// increases, the odd
symmetry of the lower SLR is broken. This leads the mode out
of darkness, as the radiative component increases and the mode
becomes less confined. The latter effect is also connected with
the fact that the lower SLR detunes from the LSPR and
approaches the (−1,0) RA as k// increases. The near- and far-

Figure 4. SLR energy dependence on nanorod width at k// = 0
obtained from eigenmode calculations.

Figure 5. xz cross section plot through the center of the nanorod of the eigenmode |E| profile of (a) bright and (b) dark modes for different w at k//
= 0. Each |E| plot has a different normalization individually. The dimension listed is the nanorod width (w).
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field properties of the SLR modes are discussed in detail in the
next section using a simple plane wave expansion model.

Regarding the Poynting vector, we observe that in the near-
field region it becomes increasingly parallel to the plane of the
array as k// increases for both upper and lower SLRs (Figure 7).
However, the Poynting vector of the lower SLR is antiparallel
to the direction of k//. Therefore, it can be recognized that the
upper and lower SLRs correspond to surface waves with
counter-propagating group velocities (Poynting vectors have
opposite directions) but parallel phase velocities (the wave
vectors k// are parallel in Figure 7).
In order to investigate the different regimes observed in the

eigenfield profile of Figure 7 in more detail, the relative
radiative portion of the loss is numerically calculated as

γ
γ

γ γ
=

+relative
rad rad

rad ohmic (1)

where γrelative
rad is the relative radiative loss portion, γrad is the

radiative loss that is calculated by integrating the power leaving
the nanorod arrays, and γohmic is the ohmic loss in the metal
nanorods. In Figure 8a, we plot γrelative

rad of the upper SLR as a
function of k// for three arrays with different nanorod widths.
For every array γrelative

rad
first decreases until a certain k// before

suddenly increasing again to reach a maximum. The k// point
where the sudden transition occurs is the point where an
additional radiative loss channel starts to become available. This
additional radiative loss channel is the outcoupling to the
(−1,0) diffraction order plane waves that only becomes
nonevanescent when the condition |k// − Gx| ≤ nk0 is satisfied.
This condition is satisfied at higher k// starting at the crossing
point between the upper SLR with the RA (−1,0). The cusp k//
point depends on the nanorod width, as changing the width
shifts the upper SLR dispersion. After the minimum γrelative

rad

increases rapidly with k// and reaches a maximum before slowly
decreasing again. The radiative loss portion decreases again at
high k// due to ohmic loss becoming dominant as the upper
SLR approaches the LSPR. The radiative loss portion of the
lower SLR is plotted as a function of k// in Figure 8b. γrelative

rad for

Figure 6. Normalized cross-section of (a) bright mode and (b) dark mode field profile at k// = 0. The vertical dotted lines indicate the field extension
for each array according to the definition described in the text. The inset of (b) shows the plot of the dark and bright mode field extension.

Figure 7. (a) Upper SLR and (b) lower SLR modal field profile
evolution as k// is increased for w = 110 nm (xz cross section through
the center of the nanorod). The shown k// values are in units of rad/
μm and directed to the right. The blue arrows indicate the Poynting
vector.

Figure 8. Relative radiative loss portion of the (a) upper SLR and (b) lower SLR for different nanorod widths.
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the lower SLR is zero at k// = 0, and it increases as k// increases.
The slower increase of γrelative

rad at low k// for arrays with wider
nanorods is due to the fact that there is a smaller detuning
between the lower SLR and the LSPR, which makes the SLR
dispersion in the low k// regime flatter and its ohmic loss more
dominant.
Plane Wave Model. We propose a simple plane wave

model, which provides an intuitive basis for the near- and far-
field properties of the calculated eigenmodes. Combined with
the simulations one obtains a global picture of the engineering
possibilities, e.g., for judicious shaping of the near-fields.
The model gives a simple expression for the field in the

uniform space above (or below) the nanorods. By exploiting
the Bloch character of the eigenmode, we obtain

∑ψ = +x z a( , ) e e
m

m
izk ix k mG( )z x//

(2)

where the z dependence stems from the uniform space in the z
direction.37 Each integer order m corresponds to a particular
propagation constant component along x (kx = k// + mGx) and
along z (kz = (n2k0

2 − kx
2)1/2). We neglect the vectorial character,

the material loss component, and the y dependence. In
addition, we already obtain a characteristic picture of the
modes by considering only three orders: m = 0, +1, −1. The
eigenmode shapes are mainly determined by the particular
orders that are present, by their symmetry, and by their
radiative (kz real, “above the light line”, |kx| < nk0) or evanescent
character (kz imaginary, “below the light line”, |kx| > nk0).
We now propose values for the Fourier amplitudes a0, a+1,

and a−1, based on basic characteristics of the modes. This is not
an exact determination by calculation, as this would entail
another simulation, as done in the previous section. However, it
provides for insight into the underlying Bloch structure of what
was rigorously calculated. Note that the dispersion (the values
of k0 and k//) is considered as a given, determined by the
eigenmode simulations (Figure 2b).
The simplest case is for the lower SLR, when k// = 0. The

antisymmetry requires that a0 = 0 and a+1 = −a−1, so we are
limited to only one option (a0,a+1,a−1) = (0,1,−1). The
resulting mode shape (|ψ| in Figure 9a) is similar to the
simulated one (Figure 5b, for w = 110 nm). In this case the
orders +1 and −1 are both evanescent along z. The absence of
order 0, dictated by symmetry, implies that there is no coupling
to radiation. Thus, there is no component above the light line,
which indeed renders the mode “dark”, and the far-field
becomes zero for large z.
Next we consider the upper SLR, at k// = 0. The even

symmetry requires a+1 = a−1. The value of a0 quantifies the
radiative component, as again it is the only plane wave above
the light line, but it also determines the strength of the central
lobe compared to the side-lobes. We plot |ψ| for a choice
(a0,a+1,a−1) = (0.2,1,1) in Figure 9b, which we compare to the
simulated profile (Figure 5a, for w = 110 nm). The near-field
shape with the larger central lobe is created by the nonzero a0.
In addition, this radiative order 0 provides for the “bright”
character of the mode, with nonzero magnitude in the far-field.
The situation becomes more complex for k// ≠ 0. For the

lower SLR, for moderate k// > 0, the modes +1 and −1 remain
evanescent, as the dispersion curves downward. Therefore, as
the mode becomes bright, a nonzero a0 is required. We choose
(a0,a+1,a−1) = (0.5,1,−1) in Figure 9c, to compare with Figure
7b, for k// = 1.26 rad/μm with k0 = 6.22 rad/μm. The
interference between the three orders clearly recreates the

characteristic simulated near-field profile, with lobes going to
the left (toward negative x) as z increases. In addition, a
nonzero (but constant) amplitude is observed in the far-field,
corresponding to radiation by order 0 in the +x direction,
which we also observe in the simulations (not visible in Figure
7b).
For the upper SLR there is a qualitative change of both the

near- and far-field pattern as k// increases, as seen in the
simulations (Figure 7a). In the plane wave picture this can be
interpreted via a shift of the three orders with k// > 0. We plot
the same amplitudes (a0,a+1,a−1) = (0.2,1,1), but now for k// =
1.26 rad/μm with k0 = 7.65 rad/μm in Figure 9d, to compare
with Figure 7a. The near-field shows a bending of the lobes
toward +x in the opposite direction as the lower SLR. The far-
field is again nonzero, but it has a nonconstant profile,
depending on x and z, unlike the constant value in the case of
k// = 0. This is a consequence of order −1 moving into the light
cone, leading to two radiative plane waves (order 0 and −1)
interfering in the far-field with a nonevanescent lobe toward
−x. The plane wave model provides a consistent picture with
the simulated Bloch modes and can be instrumental in
interpreting the near- and far-fields of SLRs. The knowledge
of the field amplitude is crucial, for example for the interaction
with localized emitters or absorbers.

■ CONCLUSION
We have shown how the spectral properties of localized surface
plasmon resonances coupled to Rayleigh anomalies influence
the properties of the mixed states: surface lattice resonances.
The SLR dispersion, line width, and associated stop-gap can be
tuned by controlling the energy detuning between the LSPR

Figure 9. Plane wave model amplitude |ψ| for (a) lower SLR (k// = 0,
k0 = 6.79 rad/μm), (b) upper SLR (k// = 0, k0 = 7.12 rad/μm), (c)
lower SLR (k// = 1.26 rad/μm, k0 = 6.22 rad/μm), and (d) upper SLR
(k// = 1.26 rad/μm, k0 = 7.65 rad/μm).
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and RAs. In turn, the LSPR spectral characteristics can be tuned
via a single geometrical parameter of the nanorods: their width.
We have also observed that both the radiative loss and the near-
field confinement (and thus ohmic loss) of the SLRs are
enhanced as the LSPR energy approaches the RA energy. The
radiative component of the upper SLR displays two regimes
depending on in-plane momentum. In the low-momentum
regime before crossing with the (−1,0) RA resonance, the
upper SLR has only one radiation loss route. In the higher
momentum regime, there are two radiation loss channels for
the upper SLR due to the (−1,0) diffraction order entering the
regime above the light line. This second radiation channel
induces a cusp in the radiative loss portion and an optimum
point at a nonzero k//. In contrast, the lower SLR is simpler
with always only one radiative channel, as it becomes less
confined and more radiative as k// increases. Additionally, these
properties are qualitatively interpreted with a plane wave
model, explaining the evolution of the SLRs via the amplitude
and radiative character of their Fourier components. With the
plane wave model picture, the upper SLR field profile evolution
can be qualitatively explained via a change in the radiative
character of a Fourier component.
Our results demonstrate the vast possibilities to tailor the

properties of hybrid plasmonic/photonic modes by simple
geometrical design and provide insight into the interplay
between plasmonic resonances and diffraction in arrays of
metallic nanoparticles. The results show the interesting balance
between diffraction orders, which can be exploited to control
both the near- and far-field profile for various applications.
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